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CHAPTER I

INTRODUCTION

1.1 General Statement of the Problem

A turbomachinery rotor, henceforth referred to as a rotor, forms

an essential and integral part of the turbo-power and propulsion plants

for underwater, air, land, and space applications. Rotor performance

depends upon the effectiveness of its aerodynamic and mechanical design.

There are a large number of problems related to the efficient design of

a rotor. A few of these problems have been resolved using theoretical

and experimental information on a cascade of airfoils and using

empirical data on actual rotors. There are still many problems which

remained unresolved until recently. One such problem is the viscous

region behind a cascade of airfoils and rotors. The viscous region

downstream of cascade of airfoils and the rotor in an otherwise uniform

stream of fluid is known as the cascade and rotor wake, respectively.

This wake region excludes tip vortices, boundary layers on the annulus

and hub walls. Lack of information on the characteristics of cascade

and rotor wakes has hindered the development of adequate theories for

the prediction of noise, unsteady aerodynamic loading, bending, and

torsional vibrations of the blades in a multi-stage turbomachine.

The investigation of the total wake problem is very complex. Due

to the complicated nature of the problem, it still continues to be one

of the least understood phenomena in turbomachines. The complications

involved in the analytical and experimental investigations are many.

The flow field behind a rotor is highly three-dimensional. There is

periodic variation, as well as random fluctuation in velocity. Moreover,
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the flow field behind the rotor is a function of a number of parameters

such as radial and axial pressure gradients, speed of rotation,

incidence, solidity, hub/tip ratio, blade geometry, blade outlet angle,

free stream turbulence, and the distance downstream of the trailing edge.

Due to complexity, economics, and time limitations, it is not

feasible to study the effect of all parameters on which the rotor wake

depends in a rotating facility. However, some of the parameters on

which the rotor wake depends can be easily simulated, theoretically and

experimentally, in a cascade of airfoils. Unfortunately, the literature

survey on two- and three-dimensional wakes (Chapter II) indicates that

even a two-dimensional cascade wake model is not yet available and most

aerodynamists and acousticians still use the isolated airfoil wake model

developed by Silverstein et al. (57). The use of this model for the

prediction of mixing losses and noise from rotors is seriously doubted.

Although it is convenient and economical to study the turbo-

machinery flow field in a cascade setup, the presence of coriolis and

centrifugal forces, swirl, and pressure gradients which cannot be

simulated in a cascade, would make the rotor wake characteristics

different from those of a cascade or isolated airfoil. The variation

of the blade element circulation along the blade span gives rise to

shed vortices. This effect, in addition to radial variation of blade

boundary layer growth and spanwise flow, causes considerable variation

in the properties of the wake along the span. Hence, there is a great

need for an experimental and analytical study of-the rotor wake in an

actual environment with a view to obtain more accurate wake models for

turbomachinery rotors.
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1.2 Objectives of the Present Investigation

The present program on the investigation of turbulent wakes of a

rotor and a cascade of airfoils was undertaken with the following

objectives:

(a) To understand the rotor wake properties, especially to discern

how the centrifugal and the coriolis forces, pressure gradient,

and rotor cascade geometry affect the wake development,

experimentally, in a cascade of airfoils and a rotor.

(b) To study the cascade wakes and how they differ from an

isolated airfoil.

(c) To develop an appropriate model, based on theory and experi-

ment, for the prediction of rotor wake properties. It is

intended to include as many variables as possible.

1.3 Method and Means of Investigation

Realizing the difficulties stated in the previous sections, the

present investigation is carried out in two phases. Phase one includes

extensive theoretical and experimental study of the characteristics of

a cascade wake, while phase two covers a detailed study of the rotor

wake.

The general problem for the prediction of the mean and turbulence

quantities for both the rotor and the cascade wake is first formulated

(Chapter III) by considering the equations of continuity, mean motion,

Reynolds stress, and turbulence dissipation. These equations are

obtained in a generalized tensor form and expressed-in a relative

rotating coordinate system. The technique used for modeling the various

terms in the absence of rotation and curvature is adopted from Lumley
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(40) and Lumley and Khajeh-Nouri (41). The complete set of equations

governing the wake flow form a closure problem with eleven unknowns and

few undetermined constants.

After the formulation of the general problem a simplified cascade

wake model is developed (Chapter IV). Boundary layer approximations

and an order of magnitude analysis are used to simplify the equations

of mean motion. Characteristics of mean velocity at the wake centerline

and the wake width are predicted by applying the principle of self-

similarity to the simplified equations of mean motion and correlating

the Reynolds stress to mean velocity gradient through eddy viscosity.

The principle of self-similarity in this analysis on the basis of

strong experimental evidence is used even close to the trailing edge of

the blade. The cascade wake model so developed is capable of predicting

mean flow characteristics of the near and.far wake characteristics of

turbulent quantities. Some relative estimates of turbulence quantities

are made.

The experimental investigations are carried out in a cascade of

airfoils (Chapter VI). The measurements of the mean and turbulence

quantities are carried out with a five-hole pressure probe and a two

sensor hot-wire probe at various axial and transverse locations down-

stream of the wake. Using the analytical model and the experimental

data, the concept of self-preservation, the effect of incidence,

solidity, variation of eddy viscosity, and decay rate of mean and

turbulence quantities are examined. A thorough investigation of a

cascade wake is helpful in the understanding and the development of

simplified rotor wake models.



The effect of some of the parameters which cannot be investigated

in a cascade (e.g., rotation, pressure gradient in spanwise direction,

etc.) are included in the second phase of the investigation. Simplified

rotor wake models are developed (Chapter V) for two types of rotors-

staggered and unstaggered blades. Equations of mean motion are

simplified by an order of magnitude analysis. Solutions for the mean

radial and streamwise profiles are predicted by using the principle

of self-similarity. Equations of Reynolds shear stress are examined for

the near and far wake characteristics of turbulence quantities. Some

relative estimates of turbulence quantities and the effect of rotation

on them are determined.

The experimental investigation on the rotor wake is carried out

using a pre-calibrated static pressure probe, single sensor, and a

triple sensor hot-wire probes (Chapter VI). The measurements are taken

in a stationary coordinate system at various axial and radial locations

downstream of the rotor. The measurement of the overall disturbance

level and its decay with distance downstream of the trailing edge of

the rotor blade is carried out with a single sensor hot-wire probe.

The mean velocity profiles and distribution of turbulence intensities

and shear stresses across the rotor wake are obtained from the triple

sensor hot-wire probe data. The data from the triple sensor hot-wire

probe is memorized in a tape recorder. Details on processing the data

from the triple sensor probe are described in Chapter VI.
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CHAPTER II

LITERATURE SURVEY ON WAKES AND TURBULENCE MODELING

Interest in the study of flow fields past bodies originated around

1920. The non-zero vorticity region downstream of-a body in an other-

wise uniform stream of fluid is commonly referred to as "wake". The

investigations started with the study of wakes of simple bodies

(cylinder, sphere, flat-plate, and airfoil) at low Reynolds numbers.

Excellent reviews (3, 21, 27) are available in early work on wakes of

simple bodies at low Reynolds numbers. Later on, it was realized that

many of the flows in engineering applications are at comparatively high

Reynolds numbers and are usually turbulent. Therefore, the study of

laminar (low Reynolds number) wakes remained more or less of academic

interest.

In the following sections, a comprehensive review of the theoreti-

cal and~experimental work on the two- and three-dimensional turbulent

wakes is presented. Most of the available literature on two- and three-

dimensional turbulent wakes is on the prediction of mean properties of

the wake. However, for the accurate .prediction of the wake properties,

turbulence modeling is important. Hence, a qualitative review of

turbulence modeling is also presented and the various problems

encountered in turbulence modeling of turbomachinery flows are also

outlined.
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2.1 Turbulent Wakes

2.1.1 Two-Dimensional Wake

2.1.1.1 Bluff Bodies. The turbulent wakes behind two-

dimensional bluff bodies were first investigated by Schlichting (56).

His theory was based on Prandtl's mixing length theory. According to

Prandtl's theory,

a~ aO
T = pL 2 1 -- I -z (2.1)

Dy Iy

where

T = Reynolds stress,

y = transverse coordinate,

L = mixing length, and

U = mean velocity in the wake.

A similar solution based on Prandtl's new theory was later obtained by

Reichardt (51). According to Prandtl's new theory,

T = p VT-ay and vT = X(Uzo- U ), (2.2)

where

VT = eddy viscosity or turbulent exchange coefficient for momentum,

P = half the wake width,

X = empirical constant,

U = wake edge velocity, and
zo

U = wake center line velocity.

The above mentioned solutions are valid only at a distance far down-

stream of the body (50 diameters in the case of a cylindrical body).
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The main reason for this is that in the case of bluff bodies, the

analytical description of the flow field close to the body is difficult

due to the existence of large scale unsteadiness in this region. More-

over, the above solutions were obtained by applying boundary layer

approximations and the precise location beyond which the theory is valid

has not been established.

Olsson (44) studied turbulent wakes of equally spaced, identical

cylinders. This case was investigated both theoretically and experi-

mentally and the theoretical results were found to be in fairly good

agreement.with the experimental results. This solution takes into

account the effect.of spacing and showed that the wake centerline

velocity recovers at a slower rate with an increase in spacing. The

solution is not valid for near wake prediction. Palmer and Keffer (45)

also investigated the similar case but with unequally spaced cylinders

of unequal diameters. In this investigation, it was established that

the energy reversal region exists in the wake of these cylinders.

Cordes (17) studied the near wake characteristics of equally spaced.

cylinders and estimated the second order effects on the characteristics

of the wake as the body is approached.

All of the above cases were investigated for constant pressure

along the streamwise direction. Hill et al. (29) studied the wake of

a rectangular body with a pressure gradient in the streamwise direction

and derived the criteria for the growth and decay of a wake. The

criteria were based on the family of wake profiles represented by

U 2
c B 2S 1 + al ) (2.3)

zo t
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where

B = fraction of U at the centerline of the wake,
C

at = momentum thickness at the trailing edge, and

al = parameter representative of pressure gradient.

If al > 0.10, the wake would decay an order of magnitude faster than the

constant pressure wake. On the other hand, for al < -0.01, the wake

would tend to grow rather than decay.

2.1.1.2 Streamlined Bodies. The laminar wake solution

provided a goodstarting point for the development of an empirical

turbulent wake model. As discussed in Reference (26), the wake center-

line velocity in the case of a flat plate laminar wake could be esti-

mated from the following relation:

0 z - 1/2 z -1
c = 1 - a ( ) + d) (2.4)2 c c 2 c c
zo

where c is the length of the plate and a2, z , and d are constants for

a particular flow and geometry of the flat plate. Near the trailing

edge, i.e., for z < c, both of the terms in Equation (2.4) would

dominate the solution, while far downstream of the trailing edge, i.e.,

for z > c, the first term in Equation (2.4) would dominate the solution.

This explains why the centerline velocity recovery would be faster near

the trailing edge. However, due to intense turbulent mixing, the

recovery in the centerline velocity of a turbulent wake would be much.

faster than in the case of a laminar wake.. In general, the velocity

recovery characteristics of the turbulent wake could be described by
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the relation

0 z -1/2
S1 - a ( + - (2.5)

zo

where constants a3 and zo would be different from a2 and z , used in

relation (2.4) of a laminar wake.

The measurement of mean velocity profile in the wake of a flat

plate was carried out by Eagleson et al. (21) in water and by Chevray

and Kovasznay (14) in air. In both of these investigations, the measure-

ment of turbulence intensities and Reynolds stresses were also carried

out. It could be inferred from both of these investigations that the

wake flow near the trailing edge would not be completely self-preserved,

however, the mean velocity profiles would be self-similar. It should

be stressed that Equation (2.5) would be valid when the turbulence level

in the free stream would be low. If the turbulence level in the free

stream is high (7 to 8 percent), then the recovery rate would vary,

probably as (z/c + zo/c)-1 (Ref. 21). However, detailed experimental

data is needed to explicitly express the effect of free stream turbu-

lence on wake centerline velocity recovery rate. No data is available

on the study of the near wake of a flat plate under pressure gradient.

Near and far wakes of a symmetrical airfoil were first investi-

gated experimentally by Silverstein et al. (57), who provided empirical

relationships for the wake decay. Preston and Sweeting (47) and

Preston et al. (48) carried out a systematic investigation of the

characteristics of the wake behind an isolated airfoil and observed

that a similarity in mean velocity profile exists close behind the air-

foil and that the wake centerline velocity recovered to about 80 per-

cent of the free-stream velocity in a quarter chord length from the



trailing edge. These observations led Spence (58) to give a general

expression of the form

0 - 1/2
c z

I- 0.1265 (- + 0.025) , (2.6)0C
zo

According to Spence, this expression would hold irrespective of the

geometry of the airfoil, which is in doubt.

There is at present no general theoretical formulation of wake

structure as a function of physical characteristics of an airfoil or

its loading. Based on the model equations of Bradshaw et al. (6),

Bradshaw (4) suggested a different type of.approach to predict the mean

velocity characteristics of the near wake of a symmetrical airfoil

using a "mixing length" fit to data of Chevray and Kovasznay (14).

Bradshaw concluded that the mixing length fit used in the analysis is

not valid once the inner wake has spread outside the inner layer of the

boundary layer. This type of analysis may not be carried out for the

case of an axisymmetric wake since mixing length may be imaginary in

part of the flow. In the case of a.cascade of cambered airfoils, no

analytical treatment is available which predicts the wake centerline

velocity, wake width, or the turbulence characteristics. Even experi-

mental data is scarce. The only experimental data on mean velocity

profiles in a cascade is due to Lieblein and Roudebush (37) and no

conclusion could be drawn from these experiments since the measurements

reported by Lieblein and Roudebush are for a very limited range of

cascade flow parameters.

Detailed investigations on cascade wakes were reported by Raj and

Lakshminarayana (49). Both mean andturbulence characteristics of a

cascade wake were considered.
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2.1.2 Three-Dimensional Wake

The literature available on three-dimensional wakes has no direct

relevance to the rotor wake, but some basic information which can be

used in the development of a rotor wake model can be inferred from the

following review on three-dimensional wakes.

2.1.2.1 Stationary Bodies. The study of three-dimensional

wakes at low Reynolds number started as early as 1930. A short review

of the early experimental and theoretical work was reported by Goldstein

(27). It could be shown by using Oseen's approximation that even at

low Reynolds number and at a large distance away from the body, the

wake centerline velocity, in the case of a three-dimensional symmetrical

body, would decay faster than in the case of a two-dimensional symmetri-

cal body. However, at large Reynolds number,.the wake would be

turbulent and the situation would be different than the laminar wake.

Swan, (60), using the mixing length hypothesis, showed that the wake

centerline velocity at far downstream of the body of revolution varies

as .(1 - z - 2/3). Detailed experimental and theoretical investi-

gations on the turbulent wake of a body of revolution were carried out

by Chevray (13). Analytical expressions were derived to express the

manner in which the mean characteristics of the wake develop in the

established flow region. The measurement of turbulent quantities was

also carried out. The results were claimed to be in good agreement

with the theory.

Explanatory investigations of the turbulent wakes behind bluff

bodies (flat plate, a circular disc) were carried out by Cooper and

Lutzky (16). The theoretical analysis of Cooper and Lutzky was no
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different from those of Goldstein (27) or Swan (60). However, plenty

of experimental data was given on turbulence measurements. The work

of Cooper and Lutzky appears to have been repeated by Hwang and Baldwin

(31) and Carmody (8) after a lapse of about nine years. Hwang and

Baldwin distinguished three regions:

(a) Region of high anisotropy extending from the body to about

fifty diameters away from it.

(b) Region of near isotropy extending from about one hundred

diameters to about four hundred diameters. This is the

region of approximate similarity and isotropic relations are

adequate for estimating the decay.

(c) Region of high intermittancy extending beyond four hundred

diameters and decay rate slows down in the final period.

Stieger and Bloom (59) examined the three-dimensional wakes with

initial eccentricity. They reported the following theoretical

conclusions:

(a) The wake with any degree of initial eccentricity degenerates

to an axisymmetric configuration and the mode of decay.

(b) If two wakes have identical flight conditions, identical

initial velocity at the axis and identical drag, the wake

with the largest initial eccentricity will decay most rapidly.

An interesting approach to the solution of the problem of swirling

wakes and jets was given by Reynolds (52) by considering the conservation

of both the angular and the axial momentum. Two different cases were

considered: (a) flows dominated by axial momentum and (b) flows

dominated by angular momentum. Case (a) corresponds to the well known

axisymmetric turbulent wake and the Case (b) to the wake of a self-
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propelled body. However, no specific conclusions were drawn when both

the axial momentum and the angular momentum were of the same order of

magnitude.

A recent study on the typical features of turbulent plane and

axisymmetric wake flows was carried out by Ermshaus (22). The results

showed that each kind of wake has its own distinct characteristics.

2.1.2.2 Rotating Bodies. Chervinsky and Lorenz (12)

discussed the case of a.free wake behind a rotating body. They showed,

analytically, that the maximum swirl component of velocity decays

faster in a free jet than in a wake. However, no experimental data is

available on the wake of a rotating body. The measurement of mean

velocity profile beyond a rotating disc was carried out by Chanaud (10).

The momentum integral analysis reported by him did not lead to accurate

predictions of the mean flow close to the disc.

The qualitative correlation between the wakes in axial flow

compressors and the blade vibrations was first given by Pearson and

McKenzie (46). However, no experimental data or theoretical formulation

of the compressor wake problem was provided or proposed. An analytical

method for predicting the distorted wake geometry behind a helicopter

rotor was described by Landgrebe (35). His analysis was developed by

the use of Biot-Savart law and numerical integration. However, it was

assumed that the wake of a rotor is in the form of a thin vortex sheet.

This assumption is of doubtful validity since, due to turbulence and

mixing with free stream, the sheet of vortices would develop into a

crude wedge. The initial application of Landgrebe's work indicated

that significant distortions of the wake geometry occur.
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An experimental technique for surveying wake characteristics

(mean velocity) of a rotor wake 'using a single hot-wire was given by

Whitfield et al. (63).. The hot-wire was used in a stationary system.

Lakshminarayana and Poncet (33) developed a method of measuring the

mean as well as turbulence properties of the wake using three sensors

located in the three coordinate directions at the exit of a rotor blade.

They measured the wakes of a.three-bladed Rocket Pump Inducer. Kiock

(32) and Evans (23) also carried out measurements of rotor wakes with

single and cross-wires, respectively. Kiock (32) investigated,

experimentally, the overall disturbance and turbulence level in cascade,

fan,.and.compressor rotor wake. The effect of Reynolds number on the

turbulence level was also investigated. However, the theoretical

representation of the decay of turbulence level is not appropriate since

the decay law is derived from the principle of self-preservation, and

the principle of self-preservation is not applicable close to the

trailing edge of the blade. The hot-wire analysis and measurement

carried out by Evans (23) were based on the assumption that radial

velocity was zero. Even though this might be true outside the wake,

the imbalance between centrifugal and pressure forces inside the wake

would-give rise to radial velocity. This radial velocity is

proportional to wake defect.

2.2 Turbulence Modeling

Most of the models developed for the prediction of mean velocity

profile in two-dimensional wakes, jets, and turbulent boundary layers

employ the concept of eddy viscosity or:mixing length. Such models are

quite successful from the point of view of predicting the gross behavior.
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There are some major drawbacks of these models. First, these models

are based on gross physical reasoning and hence, are unlikely to provide

the prediction of local properties accurately. Second, the models fail

in several situations (e.g. recirculating flows, energy reversal

regions in wakes, etc.). In the region of energy reversal, the mean

velocity gradient vanishes and the shear stress is not zero. The

existence of such regions in wakes of a cascade of cylinders of unequal

diameters and a cascade of cambered airfoils has.been established (45,

49). Moreover, the mixing length hypothesis does not take into account

the past history of the flow field.

Few of the shortcomings of the mixing length hypothesis can be

overcome by representation of eddy viscosity (VT) in a modified form

(due to Prandtl and Kolmogorov)

v =U T
T y

and

T = L  (2.7)

where

U 2 = turbulence intensity in the transverse direction,
y

T = time scale for return to isotropy,

2
q. = turbulence energy, and

L = mixing length.

Knowing the eddy viscosity and the mean velocity profiles, it is

possible to estimate the shear stress but not the turbulence

intensities. In some flow fields, shear stresses may be of the same

order as that of turbulence intensity. Excellent critical -reviews of
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the eddy viscosity and mixing length models are provided by Batchelor

(1) and Launder and Spalding (36).

Although it is possible to predict approximately the mean velocity

profile by the use of eddy viscosity or mixing length models, it is

impossible to obtain a description of the turbulent motion. With

regard to the prediction of turbulence quantities, Hu (30) and Chou

(15) proposed some theoretical models. Due to the lack of advanced

calculating machines, no numerical calculations were performed.

Batchelor and Townsend (2) obtained quantitative estimates of turbu-

lence quantities using a principle of self-preservation. The principle

of self-preservation in wakes is applicable only far downstream of the

body where the turbulence reaches an equilibrium structure. However,

in the wakes of streamlined bodies, the equilibrium structure of

turbulence is reached much earlier compared to bluff bodies. In any

case, even closer to a body, there is always asmall region at each

cross-section in boundary layers and wakes where the turbulence

structure is in equilibrium, i.e., production of turbulence equals

dissipation of turbulence. These regions are usually away from the

region of maximum shear and occur-closer to the outer edge, i.e., about

0.5 to 0.30 times the thickness of the viscous region. The axisymmetric

flows are also self-similar and can be handled by similar techniques.

The turbulence quantities in plane two-dimensional flows obtained by

the use of the principle of self-preservation obey the following

relationship (Ref. 2, 62):

U 1 (z - z n (2.8)
z o



18

where n 1 is a function of anisotropy and the type of flow field. zo is

the virtual origin. For isotropic turbulence and two-dimensional plane

wakes, n1 = 1. In the case of a plane jet, n1 = 2. In the case of a

wake of an axisymmetric body, n I = 4/3.

The experimental data on turbulence properties of flat plate (14)

and cascade (49) wakes is inconsistent with the values of the power

mentioned earlier. This indicates that the predictions based on the

principle of self-preservation are no longer correct very close to a

body. There are many other factors which affect the self-preservation

principle in actual flow fields (e.g. streamline curvature, rotation,

etc.). The detailed effect of streamline curvature on turbulent flow

was described in detail by Bradshaw (5) and that of rotation by Raj and

Lumley (50).

Higher order closure schemes, which were proposed as early as

1944 (Ref. 15, 30), could provide detailed structure of turbulence in

the wake and other types of turbulent flows. Subsequently, several

simplified closure techniques were developed. Details on some of the

closure techniques were described by Launder and Spalding (36). A

detailed quantitative discussion of merits and shortcomings of multi-

equation models of turbulence is considered in Chapter III of the

thesis. At this point, however, a passing reference is needed to

introduce one equation model of Bradshaw et al. (6) which is character-

istic of its class. Bradshaw et al.'s closure technique can predict

five quantities, three mean components of velocity, and two components

of shear stress. One of the major drawbacks of the model is the

assumption that shear stress is proportional to turbulent energy and

the ratio of two quantities is constant throughout the flow field.
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This assumption cannot be justified on the basis of the available

information except in some simple flows. Moreover, the model does

not account for transport of length scale. Most of the literature on

closure problems is referred to in References (5) and (36). More

recent closure techniques are due to Lumley and Khajeh-Nouri (41, 42).

Most of the models referred to above have been developed for a

stationary, rectangular coordinate system while, at present, most of

the boundary layer and wake problems in turbomachinery rotors employ a

relative rotating frame of reference which includes both the curvature

and rotation terms. Resolving the problems in a rotating frame of

reference eliminates the effect of periodic unsteadiness. The.

transformation of the whole set of turbulence model equations from a

stationary coordinate system to a rotating coordinate system appears

simple at first glance, but the actual procedure is complicated.

Lumley (38) has indicated a method of carrying out such a transformation.

The modeling procedure should properly account for the effect of

curvature and rotation on the turbulence structure. This is a difficult

task and has not yet been accomplished.

The effect of rotation can be large, moderate,.or small depending

upon the speed of rotation of the machine and blade geometry. If the

strain rate (S ij) and the speed of rotation ( ijk k) of the machine are

of the same order of magnitude, it is not difficult to implement the

necessary changes in the modeling. However, if Fijk k>Sij, there is no

available technique by which the effect of rotation can be taken into

account in the modeling. In such a situation, it appears that the

dominant length and time scale of the turbulence motion are controlled

by rotation only, and strain rates have a secondary effect on these scales.
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CHAPTER III

THEORETICAL FORMULATION OF THE TURBOMACHINERY WAKE PROBLEM

A critical review of turbulent boundary layers and wakes presented

in the second chapter indicates that most of the existing closure

techniques on turbulence modeling are not applicable to turbomachine

rotors. There is also no technique which can accommodate a situation

when angular speed of rotation (0) is higher than the mean strain rate

of the flow.

The main objective of this chapter is to describe the formulation

of a rotor wake closure problem in a generalized coordinate system.

The generalized coordinate system will include all curvature and rotation

terms. This problem will then be simplified by retaining only the

highest order terms as applicable to turbomachinery rotor wakes. The

problem formulated in a generalized coordinate system could easily be

reduced to a non-inertial frame of reference for stators and cascade

wakes. A description of the rotor wake problem, the physical nature and

classification of the cascade and rotor wake will be discussed.

3.1 Physical Nature of Cascade and Rotor Wakes

3.1.1 Cascade Wake

The mean velocity in a cascade wake is two-dimensional and is

asymmetric. The asymmetry in the wake is due to the past history of

the flow. Far downstream, the wake of adjacent airfoils in a cascade

interact and the resultant mean velocity profile becomes a periodic

function with a period equal to spacing of the blades. The cascade wake,

unlike the wake of an isolated airfoil, encounters an adverse pressure
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gradient because the edge velocity ina cascade wake decreases

continuously downstream. A cascade wake differs from the wake of a

cylinder, flat plate, and an isolated airfoil (symmetrical and cambered)

not only in its mean properties but also in turbulence properties.

3.1.2 Rotor Wake

Wakes of rotor blades, unlike a cascade or an isolated airfoil

wake, is three-dimensional in nature (see Figure 3.1). The three-

dimensionality of the rotor wake is due to the imbalance in the pressure

gradient and the centrifugal forces inside the wake. While the pressure

gradient is nearly the same across the wake, there is a variation in the

centrifugal forces inside the wake due to velocity defect and this

results in radial flows. Depending upon the distribution of absolute

tangential velocity, the radial flows can be large or small inward or

outward. It should be noted that distribution of absolute tangential

velocity acorss the wake can be of wake-type or jet-type, when viewed

from a stationary system. This trend is reversed when viewed from a

relative system. However, the distribution of axial and radial

components of velocity remain.the same in the absolute and the relative

frame of reference.

Referred to a stationary coordinate system, a cascade or an

isolated airfoil wake is continuously moving away from the airfoils.

Whereas, a rotor wake remains in close proximity to the rotor blade for

a longer period of time due to the rotation of the blade and the

resulting swirl. Hence, it might be expected that the wake distortions

which are neglected for a cascade or an isolated airfoil assume greater

importance for a rotor. Unlike a cascade or an isolated airfoil wake,
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Figure 3.1 Nature of Turbomachinery Rotor Wake and Notations Used.
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a rotor wake is periodically unsteady viewed from a stationary frame

of reference. However, if referred to a rotating coordinate system, the

rotor wake is steady. Furthermore, there is interference in the develop-

ment of rotor wake from the downstream blade row. Wakes of rotors in

the last stages of a turbomachine develop under the influence of

pressure gradients and high free stream turbulence. All these effects

make the rotor wake extremely complicated in nature.

A rotor wake, like cascade and isolated airfoil wake, is also

asymmetric. The asymmetry is due to the loading on the blades. Far

downstream, the wake of one rotating blade may interact with the wake

of an adjacent blade in high solidity rotors. In addition to this, the

flow separation at the trailing edge can also cause changes in the

decay rate.

The variation of blade element circulation along the blade span

causes the generation of shed vortices which can cause intense mixing

of the wake region with the free stream. This may accelerate the decay

of wake defect and is also a source of generation of additional

turbulence in the flow. The presence of hub and tip boundary layers,

secondary flows, etc., are additional sources affecting the decay rate.

3.2 Generalized Form of Governing Equations

In the formulation of the generalized rotor wake problem, the

continuity, Navier-Stokes (mean momentum), Reynolds stress and turbu-

lence dissipation equations are used. All the abovementioned equations

are presented below in a generalized tensor form for an incompressible

fluid. The equations include the curvature terms implicitly and the

rotation term explicitly.
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Continuity

U. O= 0, U.' = 0, (3.1)
1 1

where

U. = time averaged component of velocity, and

U = fluctuating component of velocity.

Navier-Stokes (mean momentum)

U.i + U. . U+ (U. U ) 2 c. O U1 1,j 1 ,j ipq

=-P,i / p + v gj U (3.2)

where

e. = an alternating tensor,
1pq

gj = a metric tensor,

P,i = time averaged pressure gradient, and

QP = angular velocity.

Reynolds Stress

The equation for Reynolds stress is obtained from the momentum

equation for U. as follows: the momentum equation for U. is multiplied
1 1

with Uk and that of Uk with U.. The resulting two equations are added

e averaged to obtain the equation for UI
and time averaged to obtain the equation for U Uk
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U.UK  + (UU U (U U. + U.U U )i K i k j k i,j I k3

+ (U U U ),j + 2 2 (U ' ipq + U Ut E )
1 k j k 1pq 1 kpq

( U P , + Ui ,k ) p vgJ(UkUi j + UiUk,ej) (3.3)

where P ',i is the gradient of fluctuating pressure.

The significance of various terms in the equation may be summarized

as follows: the first term represents a local variation of stress with

time; the second term represents transport or convection of stress by

the mean flow; the third and fourth terms represent generation or

suppression of turbulence; the fifth and sixth terms represent

redistribution due to rotation and pressure fluctuations; and the

seventh term represents dissipation due to viscosity.

The differential form of Equation (3.3) for a generalized curvi-

linear coordinate system with 0P = 0 is given in Nash and Patel (43).

Turbulence Energy

The equation of turbulence energy is obtained from the equation of

Reynolds-stress (3.3) by contraction of indices, i.e.,

2 ik
q = g U1Uk .

It is interesting to note that the rotation term vanishes identically

in this equation because it does no work on the material element. The

equation can be written as follows:
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q2 + q2, j + (U iu Ui.j + u'ku'j Uk,j) +

2 'j u'
(q U ), =-2 (U P )/ +

gj (UkUi,j + UiUk,j) (3.4)

The significance of various terms in this equation are similar to

the one as explained for Equation (3.3).

Turbulence Dissipation

The expression for the turbulence dissipation is written as

follows:

'ik it km ' '
D = 2 v S ik S = 2 V g g S ik S im,

where 1where = - (U. + I ).ik 2 i,k k,i

The time .averaged value of D is written as D. The equation for D

is obtained from the momentum equation for U. as follows: from the
1

I I

momentum equation for U. and equation for U i,k is obtained by

differentiating the equation for U . with respect to subscript k.

Interchanging the indices, an equation for U k,i is obtained. The

equation for U ik and U k,i are added and divided by 2. The resulting

equation is the equation for.S ik. Similarly, an equation for S km
I I

is obtained. Now, the equation for S ik is multiplied with S ,m and

the equation for S zm is multiplied with S ik. The resulting equations
I I

are added which results in an equation for S ikS Ym. The equation for

' ' iZ km
S ikS Im is multiplied by a factor 2 g g and time averaged to obtain

the equation for 5/v. The equation for D6/ is written as follows:
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v D 9 ,i mk ' '+ -3 J + g gk J (S mU i) + ( u )]
v V 'k ~ m i,j i Rm k,j

i mk u -
+ gg [J, (S ikU  ,j):+ O,( S ikUm,j)] +

' 'j ik)] ++ [2 SIku (S ik),j + 2 S .ikU (S ,] +

+ [(S'iku',k) i j + (S ikU,i) k,j] +

+ [(S ikU'jk) jij + (S ikU ) k j]

+ (DU--) + [s'ik kU li, U + S ikuli U k,j
V k , i kj

+ S i Ujk U i + S U 'j k +
ik k

+ 2 0 [scpq (S'ikU'q'k) + Ekpq (S'ikU qi)

+ 2 [pq (S 'mUq m ) + mpq (S'ZmUJ,)

2 9i mk ' ' ' '
= - - g g [S PmP  + S ikP ' ]

1 nj
S " (nj

- 2 V gnjgigmk [(S ik) 'n (S 9m) , +

I I

+ (S £m) ' n (S ik)'j] . (3.5)

In the above equations, ik = (U + Uki).ik 2 i,k k,i
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The significance of various terms in this equation may be

summarized as follows.

The first term represents the local variation of dissipation; the

second and eighth terms represent the flux of dissipation due to mean

and fluctuating velocity components, respectively, and are large. The

third, fourth, sixth and seventh terms may be called the generation

terms and are small. The fifth and twelvth terms are contributions to

dissipation due to inhomogeneity in the flow and are small. The ninth

term represents the production of velocity gradients which is due to

the stretching of the fluctuating strain rates and is large. The tenth

term represents the redistribution due to rotation and is not identi-

cally zero. The eleventh term represents a diffusion transport of

dissipation by pressure fluctuation and is small. The thirteenth term

represents destruction of gradients by viscosity and is large.

Equations (3.1) to (3.5) are presented in generalized tensors and

do not explicitly show the curvature terms. It is necessary to point

out that there are nine curvatures in a three-dimensional space. The

curvature terms in these equations are associated with the Christoffel

symbol (i ). Not all the curvatures are important for investigating

the mean properties of the flow in the field of turbomachinery. How-

ever, for higher order approximations, all the curvature terms are

equally important.

3.3 Turbulence Modeling

A set of equations can be chosen from Section (3.2), depending

upon the information and accuracy desired for formulating the closure

problem. Any set of equations chosen do not form a closure problem
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for the complete description of the rotor wake, since the number of

unknowns is more than the number of chosen equations. Moreover, not

all the equations given in Section (3.2) are needed for the formulation

of the closure problem for a turbulent flow: For example, if the

Reynolds stress equation is used as a first transport equation then the

use of the turbulence energy equation as a second transport, equation

does not reveal any additional information because the latter equation

is obtained from the Reynolds stress equation by contraction of indices.

However, one equation can be used to provide information for the second

equation as was done by Bradshaw et al. (6), and Hanjalic and Launder

(28).

3.3.1 Turbulence Modeling in Reynolds Stress Equation

Three terms need to be considered for modeling the Reynolds

stress equation. They are (a) the pressure gradient velocity corre-

lation, (b) triple velocity correlation, and (c) the viscous term.

(a) Pressure Gradient Velocity Correlation. Chou (15) was the

first to propose.that the pressure gradient velocity correlation

consists of two parts; that is,

(P ,iU k + U P  ) / p =  rF , + b. , (3.6)
Sk i k rik s ik,

where functions Frik and bik can be uniquely determined from double

and triple velocity correlation. The form of functions Fik and bi
rik ik

given by Chou indicates that part one of the pressure .gradient velocity

correlation originates from the interaction of the mean strain rate

with the turbulence, and the second part is due to the mutual inter-

action between the fluctuating components. The form of pressure



30

gradient velocity correlation given above limits its use to regions

away from the immediate vicinity of the solid boundary. Recently,

Hanjalic and Launder (28) and Lumley and Khajeh-Nouri (42) have proposed

different forms of the fourth order tensor. Lumley and Khajeh-Nouri

gave a more general expression valid for higher order approximation

while that of Hanjalic and Launder is only a first order approximation.

Lumley and Khajeh-Nouri point out that the first part corresponds to

rapid distortion theory, while the second corresponds to non-linear

return to-isotropy in the absence of shear.

Raj and Lumley (50) have added correction for the effect of

rotation on the tendency to equipartition in the modeling of Lumley and

Khajeh-Nouri (42). With this correction, the first part of pressure

gradient velocity correlation was written as follows:

2 (0.2 q) Fsrik(,s - rst , (3.7)
srik r,s rst t,

where F (6 6 + 6 6 2 . . . . .
srik ri sk+ 6rk6si) / 2+

This modeling is valid for turbomachinery flow fields when the flow is

analyzed in the relative rotating coordinate system.

The second-part of the pressure gradient velocity correlation in

Equation (3.6) for a nonisotropic homogeneous flow was first modeled

by Rotta (54),

(PiU + P ,kU .) / p = A -(U k - 6ik q2/3), (3.8)k k i L i k A

where A is a numerical constant of order unity and L is an integral

scale of the turbulence. The effect of pressure gradient velocity

correlation is to decrease the anisotropy and the Reynolds stress.

Hanjalic and Launder (28), and Lumley (38) replaced the term A q2/L
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2
in Equation (3.8) with l/T, where T = k q /, k is a constant and T is

known as relaxation time or time scale for return to isotropy. Daly

and Harlow (19) recognized that any modeling technique should satisfy

Galilean and tensor invariance. Lumley (38) applied the tensor

invariance concept to simple turbulent flows. Donaldson (20) formulated

a turbulence closure problem based on tensor invariance. His modeling

technique included the dependency on rotation of the mean velocity

field (vorticity vector) suggested by Lumley (38) earlier. In a recent

work, Lumley.and Khajeh-Nouri (42) noted that it is not the vorticity

vector but the anti-symmetric rotation tensor (R ) which is to be
pq

included in the expansion scheme of a functional given below. According

to the authors a second rank tensor could be written as follows:

A.. = - q2/T f..i (b , R ) (3.9)

where f.. is a functional of b and R and
13 pq pq

; ' / 2
b.i = (U U ./q - 6ij./3)

The expansion of fj. is given in Reference (42).

(b) Triple Velocity Correlation. Lumley (40) proposed that the

trace of (UkP i + U P 'k)/p; i.e., 2 6 ik(U P ),j/3p due to

inhomogeneity in the flow can be included with the triple velocity

correlation.

In Chou's (15) closure technique, it was not necessary to model

the triple velocity correlation because the second transport equation

he employed is an equation for the triple velocity correlation. In

other closure techniques (Ref. 19, 20, 28, 41), it was not considered

appropriate to use the triple velocity correlation equation as a



32

reasonable level of closure. Hanjalic and Launder (28) did not use the

triple velocity correlation as a second transport equation but used it

to simulate the triple velocity correlation by terms of lower order.

Using a tensor invariance technique, Lumley (40) modeled triple

velocity correlation along with a trace of pressure gradient velocity

correlation. In a generalized tensor system, this can be written as

follows: ' '

(U i k + 2 6ik P /3p)U~ = - A T(q /3) [6ik6 +

+a(66 + 6k 6) q 2 2 2 j+
+ (6 k  i ' - AI2 (q2/3) [6ik

+ b (6 6 + 6 ) ] D, (3.10)

where a, b, All, and A12 are undetermined coefficients. The above

modeling can be easily reduced to the case of homogeneous flow for i k.

There are many other forms of modeling techniques such as by Daly

and Harlow (19) for triple velocity correlation, and by Donaldson (20)

for trace of pressure gradient velocity correlation.. The proposed

models are a simple diffusion representation.

(c) Viscous Term. The viscous term in the Reynolds stress

equation is v gtj (U kU i'kj + U i U k'kj) and can be decomposed

as follows:

v g [(Uiu k ), - 2 U k,j] (3.11)

The first term is the viscous transport term while the second term is a

viscous dissipation. Donaldson (20) modeled the second term assuming

that it was proportional to the shear stress. He provided no supporting

arguments for this assumption. In most cases (e.g. high Reynolds

number approximation) the first term in Equation (3.11) is neglected.
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3.3.2. Turbulence Modeling in Turbulence Energy Equation

The turbulence energy equation is independent of the coordinate

transformation. The modeling techniques presented for the various

terms in the Reynolds stress equation can also be used for modeling

terms in the turbulence energy equation.

3.3.3 Simplification of the Turbulence Dissipation
Equation and its Modeling

The turbulence dissipation equation presented in an exact form for

a generalized coordinate system (Section (3.2)) is very difficult to

solve. One of the most suitable methods of simplifying this equation is

to use a high Reynolds number approximation. With such an assumption,

many terms which are dominant at low Reynolds number (e.g. in the

Viscous sublayer very close to the solid boundary) are eliminated.

However, in the present investigation of the rotor wake characteristics,

flows away from the boundary are of interest and.the high Reynolds

number approximation is valid. In this case, the expression for

turbulence dissipation can be simplified as follows:

'ik
D=2vS S

ik

i9 km ' ' ' '
= v g g [U i,kU Z,m + (U U k)'mi]

I I I I

Now [U i,kU ,m / (U iU k),m ]  0 (R L)

where RL = qL/v.
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If we ignore terms of order l/RL, then:

it km ' 1
S= v g g (U i,kU 1,m)

= Ui,k U i , k (3.12)

Several authors [e.g., Daly and Harlow (19), Hanjalic and Launder (28),

Lumley and Khajeh-Nouri (41), etc.] have contributed towards the develop-

ment of suitable models for the turbulence dissipation equation in the

cartesian tensor form. With the exception of Lumley and Khajeh-Nouri

(41), most of the authors have retained terms not consistent with the

order of other terms retained in the equation. Therefore, it appears

appropriate at this time to extend Lumley and Khajeh-Nouri's technique

to the generalized turbulence dissipation Equation (3.5). Following

the arguments developed by Lumley and Khajeh-Nouri (41) and using an

order of magnitude analysis similar to those of Tennekes and Lumley

(61) for the vorticity equation, Equation (3.5) takes the following

form:

D + D, U + (DU J),

-2 Uik U 2 v2 U.ikjU'ikj (3.13)-2 i,j 'k -i,kj(.3

A similar equation in cartesian tensors is given by Lumley (40). Both

the terms on the right-hand side of Equation (3.13) are of order one

(Ref. 41) but they differ by an order RL-1/2 Using Lumley and

Khajeh-Nouri's (41) arguments, the right-hand side of Equation (3.13)

can be represented by

- a 4 D2/q2 + a5 p/q2, (3.14)



35

where constants a4 and a5 would be different from those given by Lumley

and Khajeh-Nouri. The term DU' j can be modeled as follows (40):

DU ' = - A2(q 2/3)(q2/ 2 )'J - A22 T (q2/3) D ,

where A21 and A22 are undetermined constants. It should be remarked

here that for the highest order approximation of one, Equation (3.14)

takes the following form:

(U'i,kU . .U k,) = - (U ikU k), (3.15)
i ,jk i,kj

and is similar to the Taylor's vorticity budget.

3.3.4 Comments on Rotation and Curvature Terms in
Turbulence Dissipation Equation

The turbulence dissipation is a scalar. But its equation is not

independent of transformation from a non-inertial frame of reference to

a rotating frame as is evident from Equation (3.5). This is a further

confirmation of Lumley's statement (Ref. 38) that equations of motion

for a turbulent flow field do not satisfy the principle of material

indifference. Considering turbulence dissipation Equation (3.5) in

cartesian tensors, it turns out that the rotation terms do not vanish.

The terms are:

r T-
2 V [Q3 (U 3,2U 1,3 - U 3 ,1U 2,3) + 3 03 (U 2 ,2U 1,2)

- 2 03 (U 1,1U 2,1
) - 3 (U 2 ,2U 2,1)] (3.16)

In Equation (3.16), subscript 3 denotes the axis of the machine (z)

about which the rotor is rotating, subscript 2 denotes the tangential

direction (y) and subscript 1 denotes the radial direction (r). For
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isotropic turbulence, all the correlations mentioned in Equation

(3.16) are identically zero.

For non-isotropic flows, as is usually the case, an order of

magnitude analysis of the rotation term can be carried out in a

similar way to those carried out by Tennekes and Lumley (61) in the

vorticity equation. The rotation term (10) in the Equation (3.5) is

of the order of:

SPD/RL 1/2 (3.17)

If the abovementioned term is to contribute to the turbulent dissi-

pation Equation (3.13), then it has to be of the order of terms

retained in the Equation (3.13), i.e.,

D q/L . (3.18)

Equating (3.17) and (3.18), it is possible to estimate the order of the

free parameter P (angular velocity of the machine) necessary to have a

significant effect on the turbulence dissipation that is

0P (q/L) RL1/2 (3.19)

Similarly, if (3.17) has to be of the order of terms retained in

Equation (3.15) then

QP % (q/L) RL . (3.20)

A simple calculation for a wake of width two inches and a turbulence

intensity of fourteen percent with a wake edge velocity of about fifty

feet per second indicates that the order of P in Equation (3.19) turns

out to be 3 x 102. Such a level of angular velocity is most commonly

encountered in the field of turbomachinery. The rotation term in the

turbulence dissipation equation not only affects the dissipation rate
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directly, but also acts indirectly through changing the mean and

fluctuating velocity gradients in the turbulent flowfield.

Kolmogolov hypothesis says that all small scale structure of

turbulence is isotropic at infinite Reynolds number. But due to the

finite value of Reynolds number in most of the flows, the small scale

structure of turbulence is not absolutely isotropic. The terms given

above may be considered as a measure of the anisotropy in the small

scale structure of turbulence at finite Reynolds number. From the

engineering point of view the term is significant and should not be

neglected.

The modeling of the rotation terms in the turbulence dissipation

equation is a very complex and is a risky proposal in the absence of

any direct experimental verification. But the rotation term is

proportional to the anisotropy in the flow. Therefore, it can be

evaluated by the following relation (considering only the largest order

term in the Equation (3.16))

3T ' 2 1)L (3.21)
U

where T = k q2/D, k and A33 are constant.

The curvature term cannot be treated in the same manner. The

contribution to turbulence dissipation due to streamline curvature will

always be present whether the flow is isotropic or anisotropic. However,

the extent of this contribution is a function of anisotropy. The

effect of curvature is hidden in Equation (3.13) through the Christoffel

symbols.
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3.4 Classification of Cascade and Rotor Wakes

3.4.1 Cascade Wake

Characteristics of a cascade wake can be classified and discussed

under two categories depending upon the mean and turbulence properties

(see Figure 4.1 for notation):

(a) Near Wake: When 0 - 0 U0 and at the wake centerline,

'2 '2 '2
U z  > U x  > U . The wake width increases rapidly with streamwisez x y

'2 '2 '2
distance downstream of the trailing edge. Here, U z , U , U are

the mean turbulence intensities along the z, x, y directions.

(b) Far Wake: When U - U < o (i.e. (Uzo -U ) is

2 '2 '2
negligible compared to 0zo ). At the wake centerline, U z  = Ux

'2
U . The wake width becomes either constant or increases very slowly.

y

3.4.2 Rotor Wake

Depending upon the mean and turbulence properties, a rotor wake

can be classified under two categories (see Figure 3.1 for notation):

(a) Near Wake: When U - U =U the difference between the
so s so

'2 '2 '2
turbulence intensities U U and U is large. Nothing is knowns n' r

about their relative order of magnitude at this time. In a rotating

'2 ' 2
coordinate system, the relative order of magnitude of U , U , and

' 2
U is probably the same as in a cascade or an isolated airfoil for

r

which the effect of rotation is weak.

2 2
(b) Far Wake: (When Uso - U < U.so i.e. (U.o - ) 2 << 0. ,

where 0 is the wake centerline velocity in the s-and n plane.)

' 2 ' 2 '2
The turbulence intensities U , U , and U will significantly be

s n r

different from a cascade and the effect of rotation will be strong.
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The mean radial velocity component has not been considered in the

above classification for the following reasons:

(1) The mean radial velocity component close to the trailing

edge is only ten to twenty percent of the mean axial

velocity components.

(2) The mean radial velocity component usually disappears in a

short distance behind the trailing edge.
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CHAPTER IV

ANALYSIS OF THE WAKE OF A CASCADE OF AIRFOILS

A study of the wake of a cascade of airfoils was started with the

objective of discerning the effect of pressure gradient and the

interference effect of adjoining blades on the wake decay. Cascade

wake models may be satisfactory for stationary guide vanes or a stator.

The cascade wake models occupy an intermediate position in accuracy

between the isolated airfoil and the rotor wake models. In addition, a

thorough understanding of the wakes of a cascade of airfoils is essential

for the development of the rotor wake models.

Three regions can be identified in the wake of a cascade of airfoils

depending upon the characteristics of each region. The three wake

regions are as follows:

(a) The region very close to the trailing edge of the blade where

the effect of thickness of the trailing edge (bluffness)

dominates. This region is similar to the regions behind

other bluff bodies and is characterized by large unsteadiness.

(b) The region very close to the trailing edge is followed by

the near wake region where the effect of the cascade geometry

dominates and the effect of bluffness of the body is

considerably less. A study of this region is extremely

important from the point of view of many considerations such

as design, loss estimate, and noise generation in turbo-

machinery. The near wake region is of utmost practical

importance in turbomachinery since the rotor or stator row is
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usually followed by another blade row spaced approximately

one chord length downstream of the blade trailing edge.

(c) The near wake region is followed by the far wake region where

the effect of the geometry of the body (thickness and profile,

etc.) disappears. However, the spacing of the blades and

flow parameters still control the wake characteristics.

The velocity distributions in the region (a) is the most compli-

cated to analyze. Even when the free stream flow is steady, large

scale unsteadiness exists in this region. However, compared to the

region due to bluff bodies such as cylinders, etc., the extent of this

region is likely to be small for streamlined bodies with sharp or round

trailing edges unless there is flow separation at the trailing edge (as

in the.case of supersonic turbomachinery or heavily loaded blades).

These regions are difficult to analyze mathematically. Furthermore,

even the relevant flow measurement is hard to obtain in view of the

unsteadiness and physical constraint of the probe dimensions.

The analyses of the regions (b) and (c) are less complicated as

long as the flow is well behaved at the trailing edge of the blade.

Moreover, these regions are of boundary layer nature since the vorticity

shed from the surface of the airfoil is being convected in the stream-

wise direction and diffused by viscosity and turbulence. Since the

vorticity is spreading continually, it follows that the convection is

more important than streamwise diffusion and that streamwise gradients

of velocity are small compared to the gradients in the lateral plane.

Thus, the boundary layer type of approximations are applicable for high

Reynolds number flows usually encountered in turbomachinery practice.
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The mean.properties of the cascade wake are completely described

by the following three parameters: (i) width, (ii) wake centerline

velocity, and (iii) shape of the profile. Therefore, attention will be

first given to the prediction of the above mentioned parameters. Later,

part of this chapter will deal with the description and qualitative

estimate of the turbulence quantities.

4.1 Theoretical Considerations

Equations of continuity, mean motion, and Reynolds stress derived

in generalized tensor form (Chapter III) can be written in cartesian

tensors as follows:

. . = 0 (4.1)
1,1

U.+ .U + (U U ), = - P /p + v U. .. (4.2)
1 uJ jJ 1,jj

UiUk + U. . U .U + Ukj U U. + (U iU k), U. +
k 1,j j k k,j j i 3

+ (U iU kU ), = - (U k P i + U "P 'k ) / p + v [(U iU k),jj

-2U kjU ij] , (4.3)

where P, v, p are static pressure, kinematic viscosity and density,

respectively and the superscript dot denotes a time derivative.

The dissipation equation with terms of the order RL retained

(36) can be written as

S+ ,j O. + v (U j) = 4 2/q (4.4)
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where

2-' - I 

q = U U. D = U ik U i,k
1 1 i,k 1k

The terms (U i U kU ), and v (U ikU ikU ), may be modeled by

I I I

simple gradient transport while the deviatoric part of (U k P 'i + U P  k )

may be expressed as (Ref. 38)

S2 1
(U i k - q 6ik/3) (4.5)

I I I !

The trace of (U k 'i + U iP 'k ) may be included in the gradient

I I I

transport model of (U iU kU .),.. Here, T is the time scale for return

to isotropy and 6ik is Kronecker delta. T is given by Lumley (38).

2
T = 1 q (4.6)

8

Using the above modeling, Equations (4.3) and (4.4) can be expressed as

I I - I _ I 1 I I -

.U +U. . U .U + U .U + (U i k ) , U.
i k 1,j j k k,j j i i k j

'i- 1 ( ' ' 2

- [(U iU U T], +- (U - 6 /3) +Sk j T ( k ik

+ 2/3 D 6k = 0 (4.7)
ik

- -. t. - -2 2
D + D, U - (D,k U zU j T), = - 4 2/q2 (4.8)

For a two-dimensional cascade, wake Equations (4.1), (4.2), (4.7),. and

(4.8) constitute a closed set of eleven equations in eleven unknowns.

If it is assumed that velocity correlation
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t I I I I I

- U U = - U U << - U U
z x y x z y

(see Figure 4.1 for notations), then the number of equations and

unknowns are reduced to nine with boundary conditions to be satisfied

as follows:
I I

At y = 0 and b ; U U = 0
z y

4.2 Mean Quantities

Consider Equation (4.2) for steady and incompressible flow in

two-dimensional Cartesian coordinate system. Applying boundary layer

approximations, and neglecting the viscous diffusion and normal stress

terms which are usually small, Equation (4.2) can be written as (see

Figure 4.1 for notations)

0 Z + Z + z y = zo (4.9)
z 3z y ay Dy zo 9z

Assuming self-similarity (experimental results described later confirm

this) and using Townsend's (62) model, the velocity (Ud) and length

(Z) scales are introduced by the relationship

Uz =  z o - 0d f(y/k) (4.10)

where

0d = velocity defect at the wake centerline.

I I

Replace U U in Equation (4.9) with eddy viscosity model,
z y

U U = VT -- (4.11)
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Measuring Stations: z/c = 0.012, 0.08, 0.16, 0.24,
0.32, 0.40, 0.56, and 0.72.

Station 1 Station 2 Station 3
z = 0.00 in. z = 0.56 in. z = 1.2 in.

y, O y, U

_Uzo

S Sn  z2
Suction z, U,
Surface

S c

Pressure 1I S S .
Surface 2

U = -60,00

450

Wake

Cascade Axis

x is normal to y and z

Figure 4.1 Schematic Representation of Cascade Wake Development
with Notation.
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Substitute Equations (4.10) and (4.11) in Equation (4.9) and eliminate

0 in the resulting equation by the use of continuity equation [see
y

Reference (24) for details] we get:

Sd d [ d(zo0 d)

d dz [fd +

1 d( zok) 1 d(UZ) Z [- d f fdn
dz U2 dz

d d

+ f = 0 (4.12)

where

- Rd is Reynolds number and is assumed to be constant,

Ud  = wake velocity defect at the wake centerline,

S= half the wake width, and

Uo = wake edge velocity
zo

It is easy to show that the condition of self-similarity in the

mean velocity profile is satisfied only if coefficients of f, f2, and

f are constant in Equation (4.12); i.e.

d d d( zoUd) 1 d(Uzo 1 d(Od 9)
and (4.13)

dz' 2 dz ' dz dz

are constant.
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4.2.1 Near Wake

When z/c is small, the first term in Equation (4.12) is small

compared to other terms because the wake centerline velocity recovers

to about 60 to 70 percent between z/c = 0 to z/c = 0.2 (Chapter VII).

Furthermore, experimental results (Chapter VII) indicate that Udz is

nearly constant across the near wake. Hence, self-similarity is

attained if

z d(U zoU) 1 d(U o)
- dz - K1 and = K2  (4,14)
U 2  dddz

where KI, K2 are constants. Substituting Ud£ = K3 (constant) in

Equation (4.14), we get

1 d( oU d) K1zo d -= K (4.15)
3 dz K3  4

zo

and
d( o/Ud) K

1 dz = K- K . (4.16)
U dz 3 5
zo

Adding Equations (4.15) and (4.16), we get

dio K + K
dzo 3 (4.17)d dz 2 zo

Let 0 ' ; then, from Equation (4.17), we get
zo m

z

1 d 1U - or - '
Ud ~ (m+1)/2 (1-m)/2zd )  z(l-m)/2

zo
(4.18)

9 z(m+1)/2
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Case I:

When m is very small (m 0), i.e., zo is nearly constant, then,

Ud  1 i/zl / 2 , z A zl / 2

This is the case of a cylinder wake (z > 100 diameters), near wake of a

flat plate, and isolated airfoil when placed in uniform stream without

pressure gradient.

Case II:

When m > 0 (adverse pressure gradient), the wake centerline velo-

city will recover slower than Case I. This is the case in cascade of

airfoils and compressors. If the pressure gradient is large enough

(m > 1), the wake may grow rather than decay. Hill et al. (29)

demonstrated this experimentally.

Case III:

When m < 0 (favorable pressure gradient), the wake centerline

velocity will recover faster than Case I.

Considering the momentum integral relationship relating the

velocity defect in the wake to the profile drag, it can be easily shown

that the constant of proportionality in Equation (4.18) is a function

of the coefficient of drag (cdl/2) of the cascade of blades (62).

Therefore, a general expression of the form

1K c/20 o c
- 1 m+)/2 (4.19)

zo (z/c + z /c)

will predict the wake centerline velocity recovery in the near wake of

a cascade of airfoils. The value of Ko from various experimental data

(including that of Chapter VII) is found to be 1.25, and z /c is the

virtual origin. In all practical cases z o/c for a cascade of airfoils
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is between 0.02 and 0.03 (Ref. 37). In the present investigation

(Chapter VII), it is found to be 0.02.

Therefore, the final expression for the wake centerline velocity

is

U 1.25 cd 1/2
c- 1 - (4.20)

U (z/c + 0 . 0 2 )(lm)/2
zo

4.2.2 Far Wake

When 0 - 0 << U0 , the wake width is nearly equal to spacing (S).
zo c zo

Hence, dZ/dz = 0. The pressure gradient effects are also negligible in

the case of a cascade far wake. Therefore, from Equation (4.14), we

have

d(UzUd)
2 dz 6

or (4.21)

U ' 1
d z

The constant of proportionality can be evaluated from the momentum

integral equation and from the periodic nature of the solution. It can

easily be shown that the wake centerline velocity in this case recovers

as

1/2
c K7Cd 1

c/S1 [ ]  , (4.22)

zo

where constant K7 is dependent upon the turbulence characteristics and

the wake width. If the spacing and the turbulence characteristics at

the far wake of cascade are similar to the far wake of an equally spaced

row of bars, then according to Reference (54),
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K7 1 2 (4.23)
8WT

where L is the mixing length. For low free stream turbulence (< 1%),

K7 is found to be 0.40 (Ref. 56).

The coefficient of drag given in the above analysis can be

evaluated theoretically as follows: the total pressure loss in a

cascade is mainly caused by (i) the viscous and turbulent stresses in

the boundary layer, (ii) the flow separation, if any, at the trailing

edge, and (iii) by the wake mixing downstream of a cascade. The total

pressure loss coefficient ( ) can be evaluated from the following

relation [see References (18) and (55) for details]:

A P Uzo3  zo3 )
o 0.075 s p (4.24)

= = c/S 3 , (4.24)
1 2 1/5 2 0
2 a e

where

APo = total pressure loss,

R = Reynolds number based on chord length and inviscid axial

velocity,

U ,U = inviscid maximum velocities on the blade suction and
zo zo

pressure, respectively, and

a = inviscid axial velocity at the trailing edge.

Relating the cascade geometry to the pressure losses, it can be proved

(18) that the drag coefficient is

cos3
cd = S/c os2 m (4.25)

cos 
1

where
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m = cascade mean air angle, and

61 = air inlet angle to the cascade (measured from the axial

direction).

Hence, the expression for the drag coefficient is

-3 3
( + 0 ) cos 3

0.075 os zo p m (4.26)

Cd 1/5 3 2R 2  cos
e a 1

Therefore, in the final form, the wake centerline velocity recovery for

the near and far wake can be written as follows:

Near Wake:

3 3 3
0.075(U zo+ U zo )cos m 1/2

c 1.25 s p

0 (z/c + 0 .0 2 )(m R 1/5 (20a3) cos 2
zo e a ) Cos (4.27)

Far Wake: 3 3 3
0.075(U + 0  )cos 8 1/2

U s p
- 1 (S/c) [ ]

1 0.40 (1/5 3 2
0zo z/c Re (20a ) cos 2 1

(4.28)

A few important conclusions can be drawn from Equations (4.27)

and (4.28) regarding the characteristics of wake decay as a function of

the cascade geometry and the flow parameters. These conclusions are as

follows:

(i) In the high Reynolds number flows, the wake decays much

faster as compared to the low Reynolds number flows.

(ii) The high solidity (c/S) cascade wake decays faster than the

low solidity cascade wake.

(iii) The wakes of a cascade of highly staggered blades decay

faster than the wakes of a low staggered cascade of blades.
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(iv) The wake decay law is a function of the pressure gradient.

The wake decays faster in a favorable pressure gradient as compared to

adverse or zero pressure gradient.

4.3 Turbulence Quantities

Turbulence characteristics of the near and far wake of a cascade

are quite different. The qualitative nature of the turbulence

characteristics is discussed below.

4.3.1 Near Wake

Equation (4.7) will be used to determine the qualitative nature of

the turbulence intensities at the wake centerline very near the trailing

edge of the cascade.

Assume that the flow is steady and the development of flow is

confined to a narrow region (3/3z << 3/3y). Then, the quantities with

'2 '2 ' 2
dots over them vanish. Near the wake centerline, D, U , U , U

z y x

(and hence, q2) are nearly constant across the wake. Moreover,
, I

U U = 0, while dz /dy need not necessarily be zero, but will be

small. Using the continuity equation and applying the above mentioned

conditions to Equation (4.7) and rearranging the terms, we get, for

turbulent intensities at the wake centerline,

2 -- -
dU 1 2 2 d

z 1 '2 2 2D ('
c - (U - q /3) - 2 - (U.

dz dz

dU dU
1 2 2 ( 2D c 2[1-(U' q2/3) . 2-] + 2 c-U

dz dz

' 2
dU

dx - (Ux - 2 / 3 )  2 - ]  (4.29)
c dzT x 3
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Qualitatively, Equation (4.29) suggests that (since dUc/dz is always

positive): - 2 ' 2 ' 2
dU dU dU

dz dz > dz'

Far downstream (z/c > 1), the turbulence in a wake tends to be nearly

2 '2 2
isotropic, i.e., U = U = U' 2 . If there aren't any abrupt changes,

z y x

i.e., the process is continuous from z/c < 1 to z/c > 1, we conclude

that near the.wake centerline

U' 2 > U' 2 > U' 2
z x y

Experimentally (Ref. 49), it is found that

[U' 2]
[U ]max = 4.84 

(4.30)

' 2
[Uy ]max

near the trailing edge of the cascade of airfoils. This effect is

'2 2
due to the confinement of the flow by the wall. The ratio U /U

z y

in the case of the near wake of a flat-plate is 3.8 (Ref. .14). It is

not possible to compare these results with the available data on a

cylinder (62) since the measurements in the wake of a cylinder are

carried out at distances farther downstream.

4.3.2 Far Wake

In a far wake, the width of the wake becomes equal to the spacing.

As a result of this, the wakes of adjacent airfoils interact and are no

longer separated by the inviscid velocity profile. The peak turbulence

intensity and shear stress occur away from the wake centerline.

Therefore, it is not possible to calculate the variation of turbulence
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intensity at the wake centerline by the proposed method. However, it is

possible to calculate the relative magnitude of the turbulence

intensities away from the wake centerline in the region of maximum

shear where the intensities are nearly independent of y. Since the

wake edge velocity is nearly constant far downstream, Equation (4.7)

takes the following forms (neglecting U U and Uy U ):
z x y x

2(U zU y) y - 1 z - q 2/ 3 ) - 25/3, (4.31)

U2 Tz _ F U U (4.32)
z y T z y

0 = q 2/3) + 26/3 (4.33)

1 ' 2 2
and 0 = - (U - q 2/3) + 2D/3 . (4.34)

'2 ' 2
It is evident from Equations (4.33) and (4.34) that U = Ux

Substituting this result and Equation (4.6) in Equation (4.33) or

' 2/ ' 2
(4.34), it can be shown that U /U = 2. Similarly, using thesez y

results in Equations (4.31) and (4.32), it can be shown that U zU /
' 2

U = 0.354. From the experimental data at z/c = 0.72 (Chapter VII),
z

it is found that

[U z2 ]max
= 2.5

'2
y max

and the wake data near half of the wake width indicates that (Figure

7.15)
I I

U U
z y = 0.515

U- 2
z
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If the turbulence properties in the cascade near and far wake

are self-preserving, the turbulence quantities could be represented by

the following relations (Ref. 61, 62):

' 2 -n
U = (z - z ) 1 , (4.35)

z 0

where n depends on anisotropy. For isotropic turbulence and plane

wakes, nl= 1. The experimental data on the wakes closer to the flat-

plate trailing edge (Ref. 14) and cascade of airfoils (Ref. 47) give

'- 2 ' 2
different values of n n 1i 1) for the decay of U 2 and U . This

indicates that the cascade wake is not self-preserving close to the

trailing edge. This is found to be in contradiction to Kiock's (32)

suggestion about the cascade wake turbulence decay law which is based

on the concept of self-preservation. Streamline curvature and pressure

gradient, etc., are some of the other parameters that can affect the

self-preservation. Further discussion on this subject is presented in

Chapter VII.
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CHAPTER V

ANALYSIS OF THE WAKE OF A ROTOR BLADE

Study of flow field induced by a compressor rotor can be investi-

gated under three headings:

(a) Flow field upstream of the rotor.

(b) Flow field inside the rotor passage.

(c) Flow field downstream of the rotor.

In each of the abovementioned headings, the flow is inviscid as

well as viscous in character.

In fact, the real fluid is viscid and turbulent and, though the

viscous effects are predominant only in a small portion of the flow

field, still they play a decisive part in the determination of the

actual flow characteristics. In addition to the hub and the annulus

wall boundary layers which are common to all the three cases (a), (b),

and (c) the predominant viscous regions are:

In Case (a): undiffused wake of the previous row of stator blades.

In Case (b): blade surface boundary layer and the undiffused

wakes if any from the previous row of stator blades

which might have entered the blade passage.

In Case (c): blade surface boundary layer which develops into a

wake region after the flow leaves the trailing edge

of the blade.

In the investigation of compressor rotor wake characteristics, we

are essentially concerned with viscous regions discussed in Case (c).

These viscous regions are three-dimensional, unsteady, turbulent and

anisotropic which make the analytical and experimental investigations

horrendous.
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Characteristics of the rotor wake are dependent on a number of

variables such as the pressure gradient in the radial and the axial

directions, blade spacing, blade camber, geometry of the rotating blade,

free stream turbulence, speed of rotation, etc. It is certainly not

possible to take into account all the abovementioned parameters in

addition to the already mentioned complexities in the flow field.

Therefore, the problem has to be solved step by step in coordination

with the experiments to determine the gradients of normal and shear

turbulence stresses which play a significant role in the analytical

modeling of the mean flow characteristics.

In this chapter, the rotor wake models are developed for two types

of rotor geometries. The main objective is to predict analytically the

mean velocity profiles in the axial as well as the radial planes and to

establish the decay laws for the viscous wakes developing downstream of

the rotor blades. In addition to this, it was found desirable to

qualitatively establish the turbulence characteristics of the rotor wake.

Since a stationary observer cannot visualize continuous development

of a wake from a rotor, it is appropriate to transform the coordinate

system from stationary to rotating where the observations can be

theoretically made from the rotor. In this way, it is possible to

visualize the development of a compressor wake more clearly. The

equations of motion along with the continuity equation in the cylindri-

cal rotating coordinates are given in Appendix A (Ref. 50) and in

generalized tensor form in Chapter III.

In the analysis presented in Section (5.1), we have used a

cylindrical rotating coordinate system while, in Section (5.2), we have

used a curvilinear coordinate system. The choice of the systems is
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dependent upon the type of the rotor geometry considered. In the

following sections, we shall consider two types of rotor geometries; one

with unstaggered rotor blades and a second with staggered rotor blades.

5.1 Wakes of Unstaggered Rotor Blades

This is a very restricted case and the investigation of this

geometry was undertaken solely as a basic step in the eventual analysis

of the generalized rotor wake model. The analysis is applicable to

unloaded or slightly loaded rotor blades and is termed as the fan wake

model (Ref. 50). Although the analysis is restricted, it provides a

considerable insight into the viscid and.quasi-three-dimensional

character of the rotor wakes.

5.1.1 Mean Velocity Profiles

In this section, mean characteristics of the near and the far

wake of an unstaggered rotor blade are analyzed and simplified wake

models are developed to predict the mean axial and radial velocity

distribution. The cylindrical rotating coordinate system is employed

for the analysis (see Figure 5.1 for notation).

Consider the equations of mean motion (A-5 to A-7 in Appendix A,

Ref. 50) and apply the following assumptions:

(a) Inviscid flow outside the wake is in radial equilibrium and

the absolute tangential velocity is specified.

(b) Static pressures outside and inside the wake are equal.

(c) The boundary layer thickness (6), the mean radius (r m ) of a

fan and the distance (zl) downstream of the trailing edge, in

the region of interest are such that 6 < < z1 < < rm .
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Figure 5.1 Schematic Representation of the Wakes of Unstaggered
Rotor Blades and Notations Used.
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(d) There is no flow separation at the trailing edge of the blade.

(e) The radial component of velocity Ur, the speed of rotation

(Q) and the boundary layer thickness (6) are such that

'6 Um 0 and 6 << 0
r zo

(f) The hub to tip ratio of the rotor is large so that the

variations in the flow properties in the radial direction can

be neglected.

(g) The viscous diffusion terms which are assumed to be small

compared to the turbulence diffusion terms are ignored.

(h) The distance from the trailing edge where the wake defect

recovers to about 60 to 70 percent of the free stream velocity

is small (in terms of chord length) (Ref. 49),so that the far

wake approximations are applicable and 0U is replaced by Uzo

Using the above assumptions together with the concept of eddy

viscosity vT in r and z momentum equations, we get

SO 82

_20 = T r (5.1)
zo zI 6 T 2 2

r 36

and 2

S= z (5.2)
zo z Tr2

Equations (5.1) and (5.2) are valid for a blade row with zero

stagger and large spacing since the rotation term in Equation (5.1)

originates only due to the spreading of the wake and there is no inter-

action of the wakes of the one blade with the other.

If self-similarity in the mean axial velocity profile is maintained

and the axial moment is conserved, then, the asymptotic solution of

Equation (5.2) is
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UU 2
z -1/2 zo (rO)2

- K (z) 1/2 exp ( 2 -- ) , (5.3)
8 2 2v zUT

zo

where K8 is a constant of proportionality depending upon the blade

characteristics and the turbulence structure of the wake.

Substituting Equation (5.3) in Equation (5.1) and using continuity

we obtain:

2 (r-)2
or 20r OK 8KU zo(rO) zo(rO)

zo 8z T 2a02  = z3/ 2  exp 4vTZ

0 1/2
with T ( )

1 1/2 2vz T

The above equation can be rewritten as follows:

U r+ l U r l l exp (- n/2) , (5.4)

where
2vT 1/2

zo

is constant and has dimensions of velocity. Therefore, the dimension-

less form of Equation (5.4) is, writing Ur =g i P

g + 1l g = 1 exp (- n1 /2) (5.5)

The general solution of Equation (5.5) constitutes a set of error

functions and is written as follows:

g 2 /2 exp(-n /2)dnl+ C 1  exp(-n /2) dn1 +C2

(5.6)
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If there is no radial flow outside the wake, then the constant C2 in

Equation (5.6) is identically zero. The nature of g is now dependent

upon the constant C1 and the functions under the integral sign. There

are two possibilities; in the first, the set of the error functions may

be arranged to satisfy the boundary conditions such that their

combination vanishes at the edge of the wake (C1 = - 1). The radial

velocity profile in this case turns out to be antisymmetric. In the

second case, the combination of the error functions does not vanish

(C1 0> ) at the wake edge. Such a situation corresponds to the secondary

flow in the 'blade passage and is not consistent with the assumptions

made in the analysis.

The analysis carried out above indicates that the wake decay law

for velocity defect in the axial plane is similar to that of an

isolated airfoil or a cascade of airfoils. However, the empirical

constants necessary to describe the quantitative behavior of the wake

velocity defect in the case of a rotor wake will be different from that

of a cascade of airfoils or an isolated airfoil. The behavior of the

radial velocity profile in the above analysis is surprising. It

indicates that either there is no radial flow or, if there is a radial

flow, it does not decay downstream of the rotor but remains self-similar.

The above analysis also indicates that it is, in general, feasible

to represent the rotor wake mean velocity profiles in axial and radial

planes in the following form:

S= Uo - Ud f (r2) (5.7)

and

r 2)
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Consider the second case, i.e., when the wakes of adjacent

blades interact. Such a situation is possible in many ways, e.g.,

in the case of very closely spaced blades or far downstream of the

rotor. The solution of Equation (5.1) in this case will be periodic

and will be similar to that of equally.spaced cylinders given by

Olsson (44); i.e.,

z 1 Tr2
1 z A 1 Z cos -2 (5.8)

l z/S 2
zo

where q2 = 2r8/S, and S is the blade spacing.

Substituting Equation (5.8) in the continuity equation, we get

U 2 mr
zo S 2
zo sin (5.9)

z

Substituting Equations (5.9) and (5.8) in Equation (5.1), we get,

writing Ur 2(z) g1(T 2),

3A un 4v
2 2E S 1 2 T "

[S ] g [-- J sin -2 g 1 (5.10
2 z 2 U S

zo

If the similarity exists, then the coefficients of gl, sin 2 1 2

and gl [terms in the square brackets of Equation (5.10)] should be

constant. Therefore, the following decay laws result

2 u e-Z/S or 2 % (z/S)- 2

The two solutions are not identical, even though the qualitative

trend is similar. The general trend of the functions is shown in

Figure 5.2. Therefore, Equation (5.10) takes the following form after

multiplying throughout by UzoS/4vT, i.e.,

g + A2 g = A3 sin 2 . (5.11)
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Figure 5.2 Behavior of General Functions Governing The Decay of Isolated Airfoil,
Cascade and Turbomachinery Wakes.
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The general solution of Equation (5.11) is

gl A4 cos J2 +A sin I 2 (5.12)
4222 5 2 22)

As before [see Equation (5.6)], there are two possible profiles of Or

corresponding to function gl. In one case, gl does not vanish when

n2 = 1. This case corresponds to secondary flows in the blade passage.

In the second case, gl is antisymmetric but satisfies the boundary

condition at the edge of the wake.

The above analysis indicates that the decay rate of the axial

component of velocity due to interaction of wakes of adjacent blades

increases compared to a single blade [Equations (5.3) and (5.6)]. The

decay rate of the radial component of velocity is faster than that of

the axial component of velocity.

5.1.2 Turbulence Structure

Raj and Lumley (50) have carried out an extensive investigation on

the behavior of turbulence intensities in the wake of an unstaggered

rotor using Reynolds stress and mean momentum equations. Some

conclusions of the analysis are given below:

(i) A non-zero value of U r is necessary to see an.effect of

rotation.
-I

(ii) If speed of rotation 2 is very small compared to U r then

' 2 ' 2 '2
U >U >U

r 0 z
-I

(iii) If speed of rotation Q is large compared to U r then

'2 '2 ' 2
U >U >Ue r z
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5.2 Wakes of Staggered Rotor Blades

A more general case is considered in this section. The rotor wake

model developed in the previous section is valid only for a particular

case, i.e., when the wake leaves the trailing edge of the rotor blade

axially. However, that is not the case in actual compressors or

turbines. In all those cases of axial flow turbomachinery where the

flow leaves the trailing edge at some stagger angle, the velocity

distribution in the main stream as well as in the radial direction is

affected by the Coriolis forces; i.e. there is distortion of velocity

profiles in both of these planes in contrast to previous cases where

the Coriolis forces distort only the velocity distribution in the

radial plane.

The equations of motion (see Figure 3.1 for notations) for a flow

field in which the inviscid main stream direction is at an angle to the

axis of the shaft of rotation can be written in the rotating coordinate

system as follows (ignoring viscous diffusion and unsteady terms);

In the r-direction:

ao 30 00
r r  + + 0 + 2 0 cos X - 20s sinX -
r r n nn s as n s

2 2

s sin2 n os2X 1 -U' 2 (U U )+  (U
r r pa r Ir r an(U r n)+ s (U rU s

'2 ' 2  ' 2
UU UUr n 2 s 2

+ - -- cosX sin X .
r r r
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In the n-direction:

S + 0 + + 2Ql cosA + n cos 2 A
r r n Dn s 3s r r

!! U' U
1 p {---(U rU n) + ( + os2) r n + U 2
p n ar r n r Dn n

+ - (U nU 
)  .

as n s

In the s-direction:

O + 0 + 0 + 2Q6 sin X + r sin x
r ar n Dn s s r r

U U
-1 P -{-- (U U  ) + (1 + sin2 r s (U U )

p as 3r r s r 5n (n s)

+ 2} (5.13)

* 22
where P = P - p/2 2 , and A is the angle of the reference direction

and is equal inviscid blade outlet angle.

The following assumptions are now made to simplify the equations

of motion with a view to develop a simplified rotor wake model to

predict the mean axial and the radial velocity profiles. The

assumptions are:

1. The boundary layer does not separate from the trailing edge

and the boundary layer thickness (6), the mid-radius (r m ) and

the distance (sl) downstream which the flow is investigated

are such that

<<s < < r m1 m
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2. The turbulence of the rotor wake is weakly anisotropic and

homogeneous such that

' 2 '2 '2 2
U 2 U r U 0(u

n s r

U U U U U U 0(u )
n r r s sn

3. The distance from the trailing edge where the boundary layer

approximations begin to apply is small.

4. The choice of the coordinate leads to

U < < U and U
n s r

5. It is assumed that the hub/tip ratio of the rotor is large so

that any variation in the radial direction is negligible.

6. The turbulent stresses can be represented by

rn/P - U nU r T r

I I

snlP n s T s

where vT = eddy viscosity.

Using the above assumptions, the-equations of mean motion [Equation

(5.13)] can be simplified to

S r 20 sin = 1 ~p + T ( ) (5.14)
s as s p r T an

and 2
a s + 200 sin A = - . (5.15)

s as r p as T an

Equations (5.14) and (5.15) are non-linear equations. Therefore,

only a numerical solution is possible. Since the wake defect decays to

about 80 to 90 percent in a very short distance (referred to blade



69

spacing) behind the trailing edge (Chapter VIII), it is possible to

apply the far wake approximation. Also, assuming that the external

pressure gradient is impressed on the wake flow,

1 ap= 0
p as

and

1 = 20U sin X.
p ar so

With these assumptions, Equations. (5.14) and (5.15) reduce to

a2-

o r + 2Q (U -0) sin X = (5.16)_=T_ (5.16)
so + 2 so - T

and 2

Uso + 2~ r sin X = T (----) (5.17)

Eliminating Ur from Equations (5.16) and (5.17) and writing

0S - U = d f (n3), where T3 = n/Z and 9 is half the (5.18)

wake width, the following equation results:

[ d 2£ d d 'z s -  -- d ds d- [n 3 f ]

d 2 2 " d2  [f

S [ 3f + 2 3 f - [ ds [3

T L di "' T dud f,

so so d

4-T 1 t + V[ T]2  40[ -Tsin2 ]f, (5.19)
Sds 2 2 2

so so so

where Ud is the defect in centerline velocity (0so min).
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The condition of self similarity in longitudinal velocity (0s)

2
profile is satisfied only if the coefficients of f, n 3 f', f", 3f",

fit

r)3f and f"" are constant. This is a remote possibility in the

present form of Equation (5.19). However, some simplification can be

made at this point. Assume that the rotor we are considering is of

high solidity, i.e., the wakes of two adjacent blades start interacting.

In this case, the wake width is constant and is equal to the blade

spacing (S cos X) width. Under such circumstances, it is possible to

consider half blade spacing as the characteristic length so that dZ/ds =

0. This situation also corresponds to that of a far wake or high

solidity rotors. Equation (5.19), with these considerations, takes the

following form:

S cos d ld 2vT d
--- f [ f" +

2 ds
4Ud  ds Usood

4 T 
2  

2S2 2 2
[]2 f" = - [ cos A sin A] f. (5.20)

S cos A U Uso
so so

If similarity exists, coefficients of f and f" in the first two

terms of the above equation should be constant. Hence,

U -BU so cos A
-= exp 2 T (S cos ) ]  (5.21)
Uso

where BI is a constant.

It is also evident that,

4 vT 2
[ os ] < < 1S cos A 'Uso
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So that Equation (5.20) along with Equation (5.21) can be written as,

(A + 0c f + B f" = 0 , (5.22)

where A and B1 are constants and

'= - Sin 2  cos2A .
2

so

The solution of Equation (5.22) is

f = A6 cos {[AB 1l/2n3. (5.23)
1

Therefore, substituting Equations (5.23) and (5.21) in Equation

(5.17), we get:

Ur  Ud  -2(A+U T + UsoB 1S cos A+
S d A T 2 A6 cos {[B 1/2 3 } . (5.24)

so 0so BI1 sin A (S cos 2) 1

An estimate of the unknown constants A and B1 can be carried out.

The coefficient A can be expressed in 'terms of the coefficient B1 using

Equation (5.21),

A = B 2 so 2 (5.25)
1  4

where S = S cosX. Applying the boundary conditions (n3 = 1, f = 0) to

Equation (5.23) we get:

(AB 1/2 = (5.26)
1 2

Eliminating A from Equations (5.25) and (5.26), we get:

2 so7 2
B12 (-) + '= --Bl  (5.27)

Hence, B1 can be calculated from Equation (5.27).
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For the rotor under investigation, the value of rotation parameter

#'is of the order of 0.02; hence the value of B1 from Equation (5.27)

can be nearly expressed as:

0 S 22  soB1 =r 2v
T

Denoting Uso S /2"vT by Rs , we get:

2 2
B1R = r .
ls

Hence, the decay law for wake velocity defect [Equation (5.21)] can be

written as

Ud 2 s
= exp - 2 - -]

0 s S
so

It is important to comment on the value R . In the regions very close

to the trailing edge, the value of Rs is of order one, since eddy

viscosity is very large in these regions. Farther downstream, the

value of Rs is of the order of ten and remains nearly constant.

Therefore, basically, we should use two decay laws governing decay of

rotor wake, one closer to the trailing edge; i.e., s/S < 0.1 and the

other for s/S > 0.1.

Although the analysis presented in this section is over simplified,

it provides very important information.

1. The rate of decay of U is the same as that of the velocityr

defect in the longitudinal direction.

2. The radial velocity profile is a function of the longitudinal

velocity profile, speed of rotation, rotor cascade parameters

and the turbulence characteristics.
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3. The decay law for the rotor wake is much different than that

of a cascade or an isolated airfoil for the same case and is

the fastest of the three.
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CHAPTER VI

EXPERIMENTAL EQUIPMENT, METHODS, INSTRUMENTATION AND DATA PROCESSING

The primary objective of the experimental program was to study the

characteristics of a cascade of airfoils and rotor wake. The study

included the measurement of the mean velocity, turbulence intensity,

Reynolds stress and their decay characteristics downstream of the

blade trailing edge. All the measurements were carried out in a

stationary frame of reference. The abovementioned experimental

information was needed, not only for an understanding of the wake

characteristics, but also for the simplification of the various terms

in the equations of motion used in the theoretical formulation of the

wake models and verification of the assumptions made in the theoretical

analysis. The measurements also aided in the evaluation of some

constants in the analytical solution which otherwise could not be

determined from the boundary conditions or other theoretical

considerations,

6,1 Cascade Wake Experiment

6.1.1 Equipment Used in the Experiment

6.1.1.1 Subsonic Cascade Tunnel. A subsonic cascade tunnel

with porous side walls, designed and constructed at the ARL (Applied

Research Laboratory), The Pennsylvania State University was used in the

experiment. The cascade set up is shown in Figure 6.1. The cascade

test section permits a blade span of fourteen inches. Details on

subsonic cascade tunnel design is given in Reference (25). The
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(V

Figure 6.1 Set Up for Cascade Wake Measurements.
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condition of two-dimensionality and its practical realization during

the test was carried out according to Reference (11).

6.1.1.2 Cascade Blade Configuration. The profile of the

blades used in the cascade is shown in Figure 6.2. The blade span and

the chord are 14 and 7 inches respectively. The blade profile was

designed at the ARL. The blade profile (of trailing edge loaded type)

is very similar to the NACA-65 (8A2 8b) 10-blade section. The only

difference lies in the thickness distribution. The ARL blade profile

is thinner in the loading edge region to reduce the tendency of high

surface velocities due to the blade thickness blockage. The maximum

thickness is near the fifty-five percent chord position and its value

is ten percent of the chord length. The cascade was operated with the

following characteristics:

Number of Blades = 7

Inlet Angle (S1) = 450

Solidity (c/S) = 1.505

Incidence (i) = -60, 00, +20

Turning Angle (64) = 220, 280, 300

The turbulence quantities were measured only for -60 incidence.

The velocity of the free stream flow was 90 ft/sec and Reynolds number

based on the chord length was 3.2 x 105. The free-stream turbulence

level was 0.16 percent.

6.1.1.3 Traversing Mechanism. Two different types of

traversing mechanisms were used for measurements of mean velocity

profile (with a five-hole prism-shaped probe) and turbulence quantities
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Figure 6.2 Profile of Blade Used for Cascade Set Up.
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(with cross wire). Both types of traversing mechanisms could control

the three motions of the probe:

(i) Traversing the probe across the wake (y direction).

(ii) Varying the axial location of the probe (z direction).

(iii) Rotating the probe about its own axis.

All these motions were controlled mechanically. The traversing

mechanisms are shown in Figure 6.1. Both the traversing mechanisms

were made rigid enough so that the vibrations and the consequent

fluctuating voltages were small.

6.1.2 Experimental Method and Instrumentation

6.1.2.1 Measurements of Mean Velocity Profile. A five-hole

prism-shaped probe manufactured by the United Sensors was used to

measure total and static pressures. Three pressure transducers of

+
Validyne Type DPl5 (with pressure range - 0.5 P.S.I.D.) along with a

Validyne Type CD15 carrier demodulator were used to transfer

mechanical to electrical signals. The pressure transducers along with

carrier demodulator were calibrated against a precision manometer. The

first transducer was used to measure the difference between the total

and the static pressure (PT - P) upstream of the cascade. The second

pressure transducer was used to measure the difference between the

total and the static pressure (PT - P s) downstream of the cascade. The

third pressure transducer was used to locate the direction of the flow

so that the difference between the measurements of two static pressure

holes is zero. All the three pressure transducers were fed to a Serial

Converter Type 264 of the Non-Linear Incorporation. The Serial Converter

was connected to a Friden Flexowriter Type FI for printing the data.
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The measurements were taken at five axial stations (see Figure

4.1). The probe was traversed across the full wake width so as to

clearly determine the wake edge and'wake centerline. The calculations

for mean velocity in the wake non-dimensionalized with respect to local

edge velocity were performed according to the following relation:

0 P - P 1/2
z T s . (6.1)

Uzo (PT -s zo

6.1.2.2 Measurement of Turbulent Quantities. The turbulence

' 2 ' 2 ' '
quantities (U , , and U U w) ere measured across the wake atz y zy

eight different axial locations (see Figure 4.1). The block diagram

for turbulence instrumentation is shown in Figure 6.3. A two sensor

cross wire with nearly equal resistances (10.85, 10.84 ohms) and length

to diameter ratio (Z1/D1) = 250 was used for this purpose. The cali-

bration of the cross wire was done in the inviscid core of a jet. The

signals from the cross wires were fed to two DISA Type 55D01 constant

temperature anemometers. An overheat ratio of 1.8 was used in the

anemometers. No linearizers were used since the level of turbulence

intensity was less than twenty percent. Moreover, the addition of

linearizers in the circuit introduces an error of - 2%. Also, the

2 2 1/2
calibration curve E - E 1/2 was linear in the velocity range

used in the experiment. The output from Channel 2 of the anemometer

was fed to the DISA Type 55D25 auxiliary unit so as to inverse the

input signal. The signals were then fed to a DISA Type 55D71 battery

operated dual summing unit. The summing unit introduced a gain of 0.33.

The two outputs e1 and e2 from the summing unit were fed to two DISA
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lift on the rotor can be produced by controlling the relative

speed of the fan and the rotor.

A twelve-bladed rotor used in the test program is shown in Figure

6.5. The rotor blades are symmetrical airfoils with a zero camber.

The blades are twisted from the hub to the tip so that the blades have

no loading at all the radial locations. The rotor blades are of

circular arc (British profile Cl) base profile with a maximum thickness-

to-chord-length ratio (t/c) of 0.1 at 33 percent chord point. The

blades have a chord of 6 inches and a span of 5.9 inches. The operating

conditions of the rotor were:

Speed of rotation (rev/min) = 1010

Blade chord/spacing ratio (c/S) at the mean radius = 1.98

Flow coefficient = 0.58

Stagger angle at the mean radius = 450

Coefficient of drag (cd) = 0.012.

A photocell mounted on the rotor shaft was used to measure the

rotor speed to an accuracy of 1/10 of a revolution per minute.

6.2.1.2 Probes Used in the Experiment. Three types of probes

were used in the experiment: spherical heat static pressure probe, a

single sensor hot-wire probe, and a three-sensor hot-wire probe.

The static pressure probe used in the experiment was manufactured

by the Flow Corporation. The diameter of the sphere was 1/8 inch. The

probe has two separate rings mounted on the sphere to stabilize the

wake region by tripping the boundary layer on the sphere. The probe

was insensitive to yaw and pitch angles in a wide range of

variation ( 40).
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Figure 6.5 Axial Flow Research Fan Test Rotor with Twelve
Blades Installed.
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The single- and three-sensor hot-wire probes used in the experiment

were manufactured by the Thermo-Systems, Inc. The length-to-diameter

ratio (I 1/D1) was 400 with resistance of 6.72 ohms. The three-sensor

hot-wire probe used in the experiment is shown in Figure 6.6. The

probe had three sensors orthogonal to each other. The material of the

sensors was tungsten. The length-to-diameter-ratio (t 1 /D 1 ) of all the

sensors was 400 with resistances of 7.02, 7.08, and 7.05 ohms. The

leads from the sensors were properly shielded.

6.2.1.3 Traversing Mechanism. A traversing mechanism was

built for traversing the probe upstream and downstream of the rotor.

The traversing mechanism was mounted on the outercasing of the rotor

and is shown in Figure 6.7. The principle function of this mechanism

was to locate the probe direction such that the vortex line of the cone

formed by the three sensors of the hot-wire probe always pointed in the

direction of the machine axis. This adjustment was carried out with

the help of two allen head screws 1 and 2 (see Figure 6.7). The ;

pointer 3 could slide only in a vertical slot along with the probe

holder and the probe could be held in any vertical position by the

allen head screw 2. This arrangement avoided the circumferential

motion of the probe holder while changing the radial location. The

probe and the probe holder had marks which could be easily aligned to

give a known direction to the sensors of the probe relative to the

machine axes. The probe was located in the probe holder with the help

of two allen head screws.
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Figure 6.6 Three Sensor Hot Wire Probe Used in the
Rotor. Wake Measurements.
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Figure 6.7 Traversing Mechanism Used for Rotor Wake Measurements.
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A second traversing mechanism was built to be used for carrying

out future measurements in a relative rotating frame of reference.

Description of this mechanism is given in Appendix B.

6.2.1.4 Tape Recorder. A magnitic tape recorder/reproducer

CPR-4010 of Bell and Howell was used to record the A.C. signals from the

three channels of the anemometers and a pulse signal from photo cell.

The tape recorder used was a 14-channel system and was set to operate

as an FM recorder. The recording was carried out at a tape speed of

15 i.p.s. The choice of the speed was based on the maximum frequency

limit on the wake data required. The tape speed accuracy was - 0.15%.

The signal-to-noise ratio was 44 dB. The center frequency of recording

was 54 khz and the frequency of the signals to be recorded could vary

from 0 to 10 khz, The band width adjustment was of the wide band

group. The amplitude of input signal had to be kept from - 0.5 to

- 10 volts peak to peak for - 40% deviation, The system drift after 10

minutes of warmup was - 0.5% of full deviation in 8 hours with a tempera-

ture variation of 200C in the operating range of 00 to 500 C.

6.2.1.5 Analog to Digital Conversion Unit (ADC Unit). For

conversion of analog to digital data, ADC unit of Pastoriza Electronics,

Inc., was used. It has seven channels for analog input voltages and

each channel may be set to a gain of 8, 4, 2, or 1 by adjusting the

input gain selectors. The ADC unit transmits the digital data into an

Ampex digital tape recorder which writes each data point as one byte or

8 bits on the IBM tape in binary format. This gives a 7 bit resolution,

which corresponds to a range of integer numbers between 1 and 255. With



89

the gain set to one, the input peak-to-peak acceptable voltage is +4

to -4 volts. The sampling rate of the ADC units is 36,000 data points

per second. The record length can be set by the Bytes/Record Switch

from 4K to 512K (K=100). Before the mathematical operations can be

performed on the digitized data, it is necessary to decode the

digitized tape. The reason is that IBM operates in integer mode in

two or four bytes and in real mode in four bytes.

6.2.2 Experimental Method and Hot-Wire Equations

6.2.2.1 Static Pressure Measurements. The static pressure

(Ps) measurements were carried out using a spherical probe described

in the Section (6.2,1.2). The probe measured the average pressure in the

wake of the sphere and the wake pressure (p w) was then correlated to

the free-stream static pressure at that point. The probe was precali-

brated in a known static pressure and was evaluated as follows:

P P = K (PT - Ps )

where K.. is a calibration constant and PT is the total pressure. The

value of K., could be evaluated from the calibration curve Figure :6.8?:

In the present experiment, the probe was connected to a pre-calibrated

pressure transducer whose one end was open to the atmosphere. The

reading on the integrating digital voltmeter was read as P -P . The
w a

static pressure is measured at five axial locations and six radial

locations corresponding to each axial location downstream of the rotor

(Figure 6.9).

6.2.2.2 Hot-Wire Measurement Method. The hot-wire measure-

ments (with the three-sensor probe) and data processing technique are
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similar to that used by Lakshminarayana and Poncet (33). Additional

information on the experimental details and the difficulties encountered

in the data processing is described in the following sections.

The block diagram of instrumentation used for the measurement with

a three-sensor hot-wire probe is shown in Figure 6.10. The measurements

were carried out at five axial locations and at eight radial locations

corresponding to each axial location (Figure 6.9). Electrical signals

from the three-sensor probe were fed to the three DISA Type 55D01

constant temperature anemometers. An overheat ratio of 1.5 and a

frequency gain of 4 was set. A frequency gain of 4 provided a range of

frequency in data from 16 to 100 khz. No linearizers were used since

the measurements with a single sensor hot-wire probe (Chapter VIII)

indicated that the disturbance levels were much below twenty percent.

In addition, single sensor hot-wire measurements were carried out

with an objective to measure the overall disturbance levels upstream

and downstream of the rotor and to study the effect of rotation on the

overall disturbance level (Chapter VIII).

The output from the hot-wire anemometers was divided into two

branches. One of these went to the integrating digital voltmeter and

the second branch was fed to an amplifier. The readings from the

integrating digital voltmeter were read and noted while the signals

from the amplifiers were memorized in a tape recorder. It is extremely

important that the amplification does not introduce a phase lag between

the three anemometer signals. Therefore, three identical amplifiers

were used for amplifying the signals from the three anemometers.

Secondly, the amplification of the signals is dependent upon the

acceptable range of the input recording voltage of the tape recorder
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Figure 6.10 Block Diagram of Turbulence Instrumentation for Rotor Wake Measurements.
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[see Section (6.2.1.4)]. For details on the alignment of the probe

direction see Section (6.2.1.3).

6.2.2.3 Hot-Wire Equations. Standard hot-wire equations

were used to process the data. The well-known King's Law was used to

convert voltages (Ecm ) to cooling velocities (Vcm),

E2 -E 2 n 2
cm= ( cmR o
Vcm B2  (6.4)

where subscript c corresponds to cooling, m corresponds to an instanta-

neous point and k corresponds to probe sensor. Constants Eo2 and B2

are obtained from the calibration curve (Figure 6.11) of the three-

sensor hot-wire probe. The value of n2 was found to be 0.5. The

instantaneous cooling velocities (Vcm9) sensed by the sensors 1, 2,

and 3 (Figure 6.12) were referred to Vcml , Vcm2, and Vcm3 respectively.

Knowing Vcml Vcm 2 , and.Vcm 3 , it is possible to determine the absolute

value of the instantaneous velocity vector Vom by applying the cosine

law to all the three sensors of the probe separately and, adding the

resulting equations we get:

3 V m 0.5

IV = ( Z 2) (6.5)
om =l 2+k 9

Deviation from the cosine law correction is also incorporated in the

above derivation. In Equation (6.5), K9 is a constant whose value

depends upon length-to-diameter ratio, ( 1 /D 1 ), of the sensor. The

value of K9 for the sensor used (K9 = 0.19) in these experiments was

derived from Reference (9) and is the same for all the sensors. Once

the absolute value of V is known, it is possible to establish the

direction of V relative to the sensors of the probe; i.e.,om
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V 2 0.5
sin a mk= [c-) - K92/1 - K9 ] (6.6)

Vom

Also, it is possible to obtain components of the absolute velocity

vector along the three-sensors of the probe; i.e.,

Vmi = IVoml cos a mt (6.7)

There is a need for the transformation of the velocity components

obtained so far (Figure 6.12) to the coordinate axes of the machine (r,

z, and y) for design purposes and to the coordinate axes (s, n, and r)

used in the theoretical analysis. This, involved in-the present case

two transformations (Figure 6.12, a and 6.12, b).

(a) The plane containing wires 1 and 2 is rotated by an angle 01

so that wire 3 is in the radial direction. The magnitude of angle 81

is 350 (obtained from probe configuration).

(b) The plane containing wires 1 and 2 is rotated about the

radial direction by an angle 6 2 so that the probe sensors point in the

direction of the machine axes. Here 62 is 450 (obtained from the probe

configuration).

If 1, 2, and 3 are the directions of the three sensors of the probe

(Figure 6.12) which form an orthogonal coordinate system, then the

first transformation of the component of velocities give

(V '.2 + V2'2 ) = (Vl2 + V ) cos 61 + Vm3 sin 81
ml m2 ml Vm2 sin 1

(6.8)
V = (Vml 2 + Vm22 )0.5 sin6 1 + V3 cos 1O,
mr ml m2 1 m3 1

where

(Vml2 + Vm2)0.5 = IVomI sin a m3ml m2 om m3
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If 03 is the angle, the velocity IV omsin a 3 makes relative to the

wire 1 then,

cos 03 = cos Oml /sinam3

and

sin 83 = cos am2 /sinam3

Hence
2 2 0.5

V' = (V ml + V 2 ' ) cos 03

and
2 2 0.5

V2 ' = (V ' + V 2 ' sin e3

From the probe configuration, it is clear that V ml' and V 2' make an

angle (02) of 450 to the machine axes.

Therefore, the component of the tangential and axial velocity are

given by the following relations, respectively:

Vm0 =0.707 (V m' - V 2

and 
(6.9)

Vmz = 0.707 (Vml' + Vm2'

In the relative coordinate system we have:

W =V ,
mz mz

Wme = r - V

and

W = V (6.10)mr mr

In the streamwise coordinate system we have:

U = Wmz cos B + Wme sin e

and

- Umn Wmz cos B - Wm COS c (6.11)
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where

tan = W /Wc me mz

c is the flow angle, which the wake centerline velocity makes with

the machine axis. Wme and Wmz are time averaged relative tangential

and axial velocities.

6.2.3 Data Processing

The flow at the exit of a rotor (viewed from a stationary frame of

reference) is three-dimensional and unsteady with periodic as well as

random components as shown in Figure 6.13. The extent of three

dimensionality and the statistical properties of turbulence depend, to

a large extent, on the Reynolds number, Mach number, Rossby number and

the type of machinery. Any component of the wake velocity consists of

a turbulent fluctuation V superposed on a mean velocity V (ensemble

average of velocities at any particular location of blade passage or

wake). The periodicity is 2r/Q, where Q is the angular velocity of the

rotor. The block diagram for processing the data from the tape recorder

is shown in Figure 6.14. The undermentioned steps were followed in

processing the data:

Step l: Digitizing the analog data using ADC unit is a very

crucial step, since it determines the number of data points (M) we can

get in one blade passage. Depending upon the necessity of the number

of data points, the speed of the tape recorder can be adjusted according

to the following equation:

M = 2Tf/On , (6.12)



101

(a)

r

a z w

z z

t

Figure 6.13 Flow Field Behind a Rotor.
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Figure 6.14 Block Diagram for Rotor Wake Data Processing.
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where f is the sampling frequency of the ADC unit. The ADC unit used.

in the Department of Aerospace Engineering of-The Pennsylvania State

University has a fixed digitizing speed of 9000 words per second per

channel. Hence, the number of data points within blade-passage would

be 44.5 at 2 = 105.71. However, this number of data points was not

enough to locate the wake. Hence, the tape recorder speed was reduced

to 1/8 of the speed at which data was recorded-and-the number of records

made per set of data was 128. The number of wakes to be processed was

160.

Step 2: A computer program (Appendix A) was used to copy the

digitized tapes on a nine track labelled tape for use in the IBM 370.

The program was developed to write every thirteenth wake which assures

that the sampling points belong physically to the same passage, because

the number of rotor blades were 12.

Step 3: For derivation of the mean velocity, turbulence intensity

and Reynolds stress another computer program was written. The number of

sampling points across the wake chosen for this purpose was 301; 150 on

the one side of the peak and 150 on the other side of the peak. The

computer program follows the undermentioned steps:

(i) Conversion of all voltages to velocities using King's Law.

(ii) Using Equation (6.7), determine the velocity components along

the three-sensors of the probe.

(iii) Knowing the angles, which the probe sensors make with the

machine axes, coordinate transformations of velocity components are

carried out according to Equations (6.8 to 6.11). One set of Equations

(6.10) transfer velocity components in the relative coordinate system

while the second set of-Equations (6.11) transfer the velocity

components in the streamwise coordinate system. The data is processed

in both coordinate systems.
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(iv) Pointwise point ensemble average is carried out (33). Only

the relative coordinate system is considered. The technique follows

similarly for the streamwise coordinate system. Consider mth point on

the recorded wake. If N1 is the total number of similar wakes, then

the averaged velocity along the z direction is obtained as follows:

N=N ,

W (r,z,e) = z Wz (r,z,O )/N1,
N=l

where

o = o + 2TrN,

o is the location of the blade passage at which the mean velocity iso

evaluated. Similarly other two components of velocity can be evaluated.

This approaches the time averaged value given below for large

values of N1 i.e.,

T

mz(r) = l/T Wmz (r,t) dt. (6.14)

o

where T is the period of integration.

The error involved in the estimate is given by the following

expression (39,.33):

error = Jq/9 om/ N1  (6.15)

where q2 m is the overallturulence intensity and N1 is the nmberwhere q /V is the overall turbulence intensity and 1 is the number

of wakes.

(v) The components of fluctuating velocities are obtained as

follows:

W = W - W . (6.16)
mz mz mz
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(vi) The turbulence intensities and Reynolds stress correlations

are obtained as follows:

Turbulence Intensity:

N=N2 N1 ' 2
(W ) = E (W m) 2/NI (6.17)

N=1

Reynolds Stress:

N=N
1

W mzW me mz m/N (6.18)
N=1

Similarly, the other two components of turbulent intensity and

Reynolds stress are evaluated.

The technique described in steps IV, V, and VI is similarly

applied in the streamwise coordinate system to evaluate the components

of mean velocity, turbulence intensity and Reynolds stress.

The overall error involved in evaluating the mean velocity,

turbulence intensity and Reynolds stress is within two, five, and

fifteen percents respectively.
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CHAPTER VII

EXPERIMENTAL RESULTS AND COMPARISON WITH

PREDICTIONS FOR CASCADE WAKE

The general behavior of the mean and turbulent characteristics of

a cascade wake is predicted in Chapter IV. A few of the unknown

constants are needed to specify the quantitative behavior of the cascade

wake. These constants are evaluated from the experimental data

discussed in this chapter. The cascade used and the measurement techni-

que is described in the previous chapter. The general trend in the

experimental data is found to be consistant with the theoretical

analysis. The experimental data on the mean and turbulence quantities

is compared with other available data on a flat plate (Ref. 14),

isolated airfoil (Ref. 48) and cascade of airfoils (Ref. 37). A

general discussion on the behavior of the mean and turbulence quantities

is presented. Empirical decay laws for the turbulence quantities are

established. The region where the flow achieves self-preservation is

determined. Expressions are also given for evaluating the mixing losses

in the wake.

7.1 Mean Velocity Profile

As already.stated, mean velocity profile measurements in the wake

of a cascade were carried out for three angles of incidence (-6o, 00 ,

+20). The choice of angle of incidence was based on the fact that

there was sudden rise in the coefficient of drag beyond -60 and +20

angle of incidence for the cascade under investigation. Plots of mean

velocity profile across the wake at different axial locations and at

different angles of incidence are shown in Figures 7.1, 7.2, 7.3.
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Figure 7.1 Mean Velocity Profile in a Turbulent Cascade Near
Wake (incidence = 00o)
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(See Figure 7.1 for Notation)
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Figure 7.2 Mean Velocity Profile in a Turbulent Cascade Near
Wake (incidence = +2 0)
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(See Figure 7.1 for Notation)
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Figure 7.3 Mean Velocity Profile in a Turbulent Cascade Near
Wake (incidence = -6o).



110

At the trailing edge (z/c = 0.0), the profiles exhibit character-

istic features of boundary layer. The profiles are nearly symmetrical

for zero angle of incidence, but show appreciable asymmetry at other

angles of incidence (Figures 7.2 and 7.3). This asymmetry is

preserved even at z/c = 0.56. The boundary layer thickness near the

trailing edge is greater on the suction surface for angles of incidences,

i = 0 and 20, and the trend is reversed for incidence at i = -60

7.1.1 Self-Similarity

In Figures 7.4a and b, an attempt is made to reduce the mean

velocity data to a single curve using scaling velocity as difference

between the maximum and minimum velocity (Ud = Uzo - U c) and two

different scaling lengths (Zos and Z op), which are distances on suction

and pressure side of the wake centerline from the point of minimum

velocity to a point where the velocity is 1/2 (Uzo - U ).

Figures 7.4a and b show the existence of similarity in the velocity

profiles, when the velocity and the length scales described above are

used. The profiles also become symmetrical about the wake centerline.

The mean velocity can be represented by an expression of the type

3/2 2
(1 - ) ,3/2 where n1 = Y/o , or Y/ap depending upon the suction or

os op

pressure side of the airfoil, respectively. The length scales os and
Os

o are different in the present case due to past history of the flow.op

However, in the case of the cylinder, flat plate or symmetrical airfoil

at zero angle of incidence, 9 = .
os op

The ratio Ud o/Uozt c is found to be nearly constant at all axial

locations and angles of incidence (Figure 7.5). This confirms the

self-similarity assumption made in deriving Equation (4.12).
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7.1.2 Wake Centerline Velocity

In Figures 7.6 a and.b are shown the variation of the wake

centerline velocity with downstream distance at various angles of

incidence. Leiblein and Roudebush's (37) data for a cascade, Chevray

and Kovasznay's (14) data for a flat plate and Preston et al.'s (48)

data for an isolated airfoil are shown compared with the authors's

cascade data in Figure 7.6b.

It is clear from Figure 7.6a that the experimental results are in

excellent agreement with the theoretical expression [Equation (4.19)].

Values of K and z /c are found to be 1.25 and 0.02, respectively.

The values of coefficients of drag used for determining the constant k

in the present investigation are determined experimentally. In the

present investigation, (-m+1/2). changes from 0.39 to 0,487 for the

change in angle of incidence from -60 to +2 . It is interesting to

note that the value of k reported by Spence (58) for an isolated airfoil

and the author'.s for a cascade of.airfoils are about the same. While

Spence's expression for Uc is valid for zero pressure gradient -(m = 0),

the author's [Equation (4.27)] for a cascade is more general.

A few important observations can be made from Figure 14.2, about

the mean properties of cascade near wake.

(i) The wake centerline velocity is recovered to within 70 to

80 percent between trailing edge and half a chord length downstream.

(ii) Wake of a cascade decays slower than the wake of an isolated

airfoil.

(iii) Wake decay of a cascade is dependent on the solidity and

angle of incidence.
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(See Figure 7.5 for Notation)
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Figure 7.6(a) Logarithmic Variation of Wake Centerline Velocity
with Downstream Distance at Incidences: 00, 20, -60
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(iv) Wake decay of a cascade is dependent upon the geometry of the

airfoil used. This is clear from the comparison of the wake of a flat

plate and the symmetrical 12/40 Piercy airfoil (Ref. 48) at zero angle

of incidence. These conclusions are in confirmity with the

theoretical predictions (Chapter IV).

No measurements were carried out far downstream (z/c > 1). There-

fore, it is difficult to comment on the accuracy of expression (4,28).

However, Equation (4.28) for cd = 1 reduces to the case of a far wake

of equally spaced row of bars investigated by Olsson (44) who showed

good agreement between experimental and theoretical results.

7.1.3 Wake Edge Velocity

The wake edge velocity measured in the cascade at various angles

of incidence are shown plotted and compared with isolated airfoil data

in Figure 7.7. It is evident that the wake edge velocity for a cascade

first decreases very sharply near the trailing and then at a much

slower rate. This trend is easily explained on the basis of the

continuity equation

Uzot (Sn - *) = constant,

where Uzo t is the wake edge velocity at the trailing edge and 6* is

the displacement thickness and S is defined in Figure 4.1. 6*
n

decreases rapidly near the trailing edge and at a slower rate further

downstream. The wake edge velocity for an isolated airfoil increases,

while that for a cascade decreases downstream (Figure 7.7).

The edge velocity can be expressed as (Figure 7.7),

0 P /zzo



117

1.0

0.8

+1

o 0.6 - o Isolated Airfoil (Preston et al.)
,1N *, A Cascade (Author)

-, - Uet z- 016, z0. 0 8 , z-0 0 3

(a)

0.4 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0,5

z/c

-1

(See Figure 7.7a for Notation)

0

(b)
S +1

0 -1 -2 -3 -4 -5

Log (z/c + z /c)e o

Figure 7.7 Variation of Wake Edge Velocit with Downstream
Distance at Incidences; 00, 2 -60



118

where the value of m is found to be - 0.028 for an isolated airfoil

and 0.16, 0.08 and 0.03 for cascade at angles of incidence -6O, 00 and

20, respectively. Based on this, the exponent of (z/c + z o/c) in

Equation (4.27) should be 0.42, 0.46, and 0.485, respectively, for the

cascade of blades at -60, 00, and 20, respectively. Values of this

exponent derived directly from the wake measurements (Figure 7.6) are

found to be 0.39, 0.46, and 0.487, respectively. Thus, the agreement

between the theoretically predicted decay rate [Equation (4.27)] and

the measured rate is good. This clearly points out the effect of

external pressure gradient (m $ 0) and its effect on wake decay.

7.1.4 Wake Width

A logrithmic plot of the variation of the wake width at various

distances downstream is shown in Figure 7.8. It is interesting to

note that most of the wake width data follows the relationship

b -b o 0.58
1/2 = 1.35 (z/c + z/c) (7.1)

ccd

where b = wake width, b its value at the trailing edge. The values of

Cd used in Figure 7.8 are the measured values. The points up to z/c =

0,35 seem to be well represented by this equation and the exponent

in Equation (7.1) is nearly 0.5 beyond this point.

Theoretically, the exponent in Equation (7.1) should be 0.58, 0.54,

and 0.515 [Equation (4.18)] with m = 0.16, 0.08, and 0.03 for -60, 00,

and 20, respectively. The discrepancy between the theory and the

experiment may be due to the difficulty in assessing the value of b

from the measurements. Nevertheless, it is evident that the widely

used representation of wake width (b I z1/2 ) is not accurate, especially

for a cascade wake with pressure gradient in the external flow.
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7.1.5 Momentum Thickness (8*) and Shape Factor (H)

A plot of the variation of the momentum thickness * is given by

U U*= j (1 O dy

zo zo

and the shape factor H (where H = 6*/6) with downstream distance from

the trailing edge is given in Figure 7.9. The magnitude of the

momentum thickness first increases and then becomes almost constant

while the shape factor decreases first and then becomes nearly constant.

Therefore, the maximum of mixing losses takes place very close to the

trailing edge.

The characteristic behavior of * is explained on the basis of

the well-known Von Karman's momentum integral equation:

dU T
dO* 6* zo o7.2)d + (H + 2) 7dz P 2)
dzdz 2(.

zo zo

In a wake, skin friction is zero; therefore, Equation (7.2) reduces to

the following form:

do* + (H + 2) zo 0 (7.3)
dz dzUzo

Equation (7.3) shows that increase or decrease of 8* depends upon the

variation of zo . If 0z increases, then 0* decreases (isolated); ifzo zo

3zo decreases, then * increases (cascade). This is evident from

Figure 7.9. The variation of shape factor with downstream distance from

the trailing edge of an isolated airfoil is given by Spence (58):

(1- 0) = (1 - -) (40 z/c + 1) 1/2 (7.4)
t
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where Ht is shape factor at the trailing edge. The same expression

accurately predicts the variation of H in a cascade near wake (Figure

7.9).

Since H can be predicted and zo is known, 8* for the cascade can

be predicted from Equation (7.3).

7.2 Turbulence Quantities

7.2.1 Turbulence Intensity

In Figures 7.10 and 7.11 are shown the plot of turbulence

'2 '2
intensities in streamwise [ U ] and transverse [U ] directions

z y

in the cascade wake at different axial locations. Initially, the

curves are asymmetric about the wake centerline and the asymmetry is

retained in the region of investigation (0 < z/c < 0.72). The asymmetry

about the wake centerline is due to the past history of the flow.

However, far downstream, the asymmetry may disappear because the flow

tries to forget its past history. The maximum of turbulence intensity

in the present case occurs almost at the wake centerline. The reasons

for this are as follows. Exactly at the wake centerline Reynolds

stress is either zero or has a very small value. The anisotropy

introduced into the flow due to the presence of the body is an

additional source of turbulence intensity at the wake centerline

besides being the transport of turbulence energy by advection. The

conversion of the energy of mean flow to turbulent energy takes place

through the process of diffusion along the velocity gradients.

Transport cannot bring kinetic energy from the center of the wake

because gradients of turbulence intensities are negligible there.

Therefore, the deposit of energy due to advection and turbulence
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production are completely dissipated there. At the same time, the

region of maximum shear close to the wake centerline will behave in a

different way. Due to the existence of large gradients, most of the

energy transported to the outer part of the wake originates here, while

the remaining dissipates. Hence, it is not unlikely that a maximum of

turbulence intensity will occur at the wake centerline in the present

situation.

However, far downstream of the cascade the maximum of turbulence

intensity will not usually occur at the wake centerline, because the

production due to anisotropy is negligibly small at the wake centerline

and the turbulence production peaks (in the region of maximum shear)

will be away from the centerline. Therefore, there will be a gradient

transport of energy to the outer part of the wake, and hence, dissipation

will be considerably less than in the case of the near wake.

The distance downstream where the peak of turbulence intensity will

cease to occur 'at the wake centerline depends upon the maximum thickness-

to-chord-length ratio in cascade of slender bodies. For a very thin

flat plate, the peak of turbulence intensity may not occur at the wake

centerline even close to the trailing edge of the plate (Ref. 14).

2 U2/ -
The decay rate of the maximum of Tuz [ U ] and TuyU /YU

with distance downstream from the trailing edge is shown in Figure 7.12.

As is evident from Figure 7.12 (Tuz)maxdecays faster than (Tuy)max in

the region of investigation (0 < z/c < 0.72). This confirms the

earlier conclusion, based on theoretical considerations, made in

Section (4.3.1) [Equation (4.30)]. The variation of (Tuz)ma x and (Tuy)ma x

in a cascade can be represented by the following expressions:
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' - 0.35
T % = 8 (z/c + z /c) (7.5)
uz o

and

' - 0.20
T % =4.6 (z/c + z /c) (7.6)
uy o

It should be remarked here that all intensities are normalized with

respect to local mean velocity. The value of the virtual origin

[z /c] in this case is found to be 0.05.
o

(T uz)max is found to be roughly twice as large as (Tuy)ma x near

the trailing edge as expected due to wall constraints. Farther down-

stream they tend to become equal (Figures 7.10, 7.11, and 7.12). The

quantitative nature of behavior of turbulence intensities at the wake

centerline is consistent with Equation (4.30). Although the turbulence

intensity Tux was not measured, but it is predicted that Tux will be

close to T than to T in magnitude. But away from the trailing
uy uz

edge (z/c > 0.1) it will take an intermediate value between Tuz and Tuy

It is interesting to note that (Tuz)max and (Tuy )max in the case

of a flat plate (Ref. 14), also decay with the same power law as cascade,

Equations (7.5) and (7.6) (see Figure 7.13).

7,2.2 Reynolds Stress

Figure 7.14 shows the distribution of Reynolds stress in a wake

behind the cascade at.different axial locations. It should be noted

here that Reynolds stress changes sign abruptly at the wake centerline

and the maximum of Reynolds stress on either side of the wake center-

line need not necessarily be the same in magnitude and are in fact

found to be different near the trailing edge (Figure 7.14) of the

cascade of cambered airfoils investigated here. However, away from the
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trailing edge, this difference disappears. The maximum value of

Reynolds stress decreases rapidly along the streamwise direction up to

a distance of z/c = 0.35 (Figure 7.12). But beyond z/c > 0.35, the rate

-2
of decrease is small. Variation of [T/PU ] maxwith distance downstream

is given by the following expression (Figure 7,12):

[ '] = 0.005 [z/c + 0.05 ]-0.72 (7.7)
2 max

z

Near the wake center, the shear stress varies linearly across the

wake. A very sound qualitative explanation for such behavior has been

given by Townsend (62) for a far wake. The same reasoning applies

also to a near wake. It should be observed that (DT/Dy)y=0 is decreasing

with streamwise direction and the region of maximum shear is displaced

away from the wake centerline with streamwise distance downstream.

In the present investigation, it is found that the point where

0 z/3y = 0 (wake centerline) need not necessarily be the same where

Reynolds stress is zero. This clearly indicates that mixing length

hypothesis is not valid for predicting the mean and turbulence quantities

in such a region. The variation of U U /Uz with distance downstream

from the trailing edge is shown in Figure 7.15 and is found to be

constant (0.515) near half the wake width. The constant value is found

to be little higher than in flows with uniform distortion of homogeneous

turbulence (0.4) or the theoretical value (0.354) predicted in Section

(4.3.2).

7.2.3 Self-Preservation

An attempt was made to correct turbulence intensities and Reynolds

stress data using the same velocity and length scales as that used for
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mean velocity. The data could not be reduced to a single curve as in

the case of mean velocity profile. This shows that the flow is not

completely self-preserved. An explanation for such behavior can be

given by considering the turbulent energy equation. In a two-

dimensional mean motion, the two energy production terms can be written

as

- U -z and (U - U 2) __ (7.8)
z y ay z y az

The first of these terms is usually ignored in homogeneous distorted

turbulence, while the second in isotropic far wake. Therefore, the

term introducing nonself-preservation in the flow is the second term.

Since at the trailing edge of the cascade there is production of

turbulence intensity and the flow is anisotropic, the second term is of

comparable magnitude to the first term. The production of turbulent

energy differs for various bodies and depends upon the shape of the body.

In the case of bluff bodies the second term is of much higher order

(3 to 4 times) compared to streamlined bodies or flat plate. This is

the reason why in the case of streamlined bodies the self-preservation

is attained much earlier than in the case of bluff bodies. Reynolds

(53) deduced a criterion for self-preservation based on the above two

energy production terms,

-U U aU /ay
p = [ z z ]y=, (7.9)

(Uz 2-U'y2) D
z / az

where P is half the wake width. If P > 1, (i.e., shear dominated flows)

and equal to 3 the flow tends to be nearly self-preserved. But for

complete self-preservation, P has to have a much larger value (> 10).
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If P < 1, the flow is not self-preserved. Variation of P downstream

in the streamwise direction of the cascade is shown in Figure 7.16.

This shows that, from z/c = 0.24 onward the wake is nearly self-

preserved.
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CHAPTER VIII

EXPERIMENTAL RESULTS AND COMPARISON WITH

PREDICTIONS FOR ROTOR WAKE

The general behavior of the mean flow characteristics of a rotor

wake was predicted in Chapter V. A few of the unknown constants are

needed to specify the quantitative behavior of the rotor wake. These

constants are evaluated from the experimental data discussed in this

chapter. The general trend in the experimental data is found to be

consistent with the theoretical analysis. The data on the mean and

turbulence quantities is compared with the data of an isolated airfoil

(Ref. 48) and a cascade of airfoils (Ref. 49). A general discussion on

behavior of the mean and turbulence quantities is presented. Empirical

decay laws are established for the turbulence quantities.

The measurements with a single sensor hot-wire probe, static pres-

sure probe and three-sensor hot-wire probe will be presented and

discussed.

8.1 Overall Disturbance Level

Plots of overall disturbance level TD  2/V, V:= circumferential

average, of downstream distance from the trailing edge and speed of

rotation of the machine are shown in Figure 8.1. Measurement of the

overall disturbance level was undertaken due to the following reasons:

(i) It will aid in the selection of the turbulence instrumentation

for measurement with a three-sensor hot-wire probe.

(ii) It provides information on the gross characteristics of wake

turbulence downstream of a rotor.



136

0.5 0.75 Q/QD 1.0
0.08

-o

0.06

0.04

0.02

I . I

0 0.2 0.4 0.6 0.8
z/c

Figure 8.1 Variation of Total Disturbance Level with
Distance Downstream and the Speed of Rotation.



137

(iii) In addition, it provides an easy means of studying the

effect of rotation on overall disturbance level at the

design operating condition.

The overall disturbance level was measured with a single-sensor

hot-wire probe. Two sets of experiments were carried out. In the first

set of experiments, the probe was traversed downstream of the trailing

edge. However, the radial position of the probe at the downstream

stations was kept the same (r/rt = 0.72). In the second set of experi-

ments,.the position of the probe was not changed but the speed of the

rotor was varied.

As is evident from Figure 8.1, there is a rapid drop in the overall

disturbance level close to the blade trailing edge. Farther downstream,

the drop in overall disturbance level is considerably smaller. The

effect of the variation in speed of rotation on the overall disturbance

level is also shown in Figure 8.1. It should be noted that the flow

coefficient was kept the same while the speed of rotation was changed.

This is the main reason why the effect of rotation is insignificant.

It should be pointed out here that the overall disturbance level changes

with flow coefficient (Ref. 23, 24). Since the rotor in this case was

always operating at design condition, very little change in overall

disturbance is observed.

8.2 Static Pressure Distribution

A static pressure probe, manufactured by The Flow Corporation,

was used to measure the static pressure at the exit of the rotor. The

probe is 3.2 mm in diameter and has two separation rings to assure

stability of the sphere's wake region. It is insensitive to yaw and
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pitch angles in a wide range of angles of variation (+ 400).

Calibration of the probe is described in Chapter VI.

The radial distribution of static pressure coefficient ( s) at

various axial stations is shown in Figure 8.2. It is evident from this

figure that the variation of s in the axial direction is small. The

measured gradients in static pressure (ap/ar) is in close agreement

with the predictions based on the equation

1 = 20 Uso sinX + 2r (8.1)
p ar so

This confirms the validity of the assumptions made in the theoretical

analysis.

8.3 Mean Velocity Profile

As indicated earlier, mean velocity profile measurements in the

wake of a rotor were carried out at eight radial stations and five

axial stations. However, only one radial station is considered in this

discussion. The radial station selected is r/rt = 0.58. Plots of mean

streamwise and radial velocities are shown in Figures 8.3, 8.4. The

radial component of velocity in the wake close to the trailing edge is

about ten percent of the free stream velocity and the radial flow in

the inviscid region is of the order of one percent of the free stream

velocity (Uso) . The trend was similar at all other radial stations of

measurement downstream of the rotor.

The velocity profiles shown in Figures 8.3, 8.4 are typical of a

three-dimensional wake and are unsymmetrical about the wake centerline.

The asymmetry is preserved downstream of the rotor. The appearance of

radial flows in the wake is due to the imbalance of centrifugal and
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pressure forces inside the wake and its direction is outward very

close to the wake centerline. The peak radial velocities occur away

from the wake centerline and radial velocities are very small at the

wake edge and the wake centerline.

8.3.1 Self Similarity

In Figure 8.5, an attempt is made to reduce the streamwise mean

component of velocity to a single curve using the scaling velocity Ud

and two different length scales (kos and op), which are distances on

the suction and pressure sides of the wake centerline from the point of

minimum velocity to a point where the velocity defect is Ud/2.

Figure 8.5 shows the existence of similarity in the velocity

profile when the velocity and length scales described above are used.

The profiles become nearly symmetrical about the wake centerline. The

streamwise velocity profile does not show close agreement with the

gaussian distribution [i.e., e - 32 or (1-33/2 2 ] unlike ar unlike a cascade wake

(Ref. 49), except near the wake centerline.

A close examination of Figure 8.4 also shows that the mean

components of radial velocity are also nearly similar.

8.3.2 The Decay Laws

Figure 8.6 shows the variation of the wake centerline velocity

defect (streamwise component) with streamwise distance downstream of the

rotor. The data for cascade of airfoils (Ref. 49) and isolated airfoil

(Ref. 48) are compared with rotor wake data in Figure 8.6.

The data on rotor wakes was used to find the Rs in Equation (5.28).

Due to finite thickness of the trailing edge, it is necessary to add a
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value of the virtual origin to s in Equation (5.28). With the above-

mentioned additions, Equation (5.28) takes the following form:

- exp [- 2/R (s/S + s /S)]. (8.2)

so

The constant s in the above expression depends on the trailing
0

edge thickness and Rs should depend on the flow and blade parameters

of the rotor.

The rate of wake decay very near the trailing edge is found to be

very large (Figure 8.6) and, in this region, Rs = 0.71 and s IS = 0.013.

Equation (8.2), with these constants, is valid up to s/S = 0.15.

These constants will be different farther downstream, since the diffusion

properties which control the value of R through eddy viscosity changes.

Furthermore, the virtual origin is now dependent on the slope of the

wake spread and not the trailing edge thickness. In the region s/S

> 0.15, the constants in Equation (8.2) were found to be so/S = 3.46

and R = 14.00.

A few important observations can be made from Figure 8.6. (a) The

streamwise component of wake centerline velocity recovered to within 90

percent between trailing edge and one quarter chord length downstream.

(b) The rate of decay of rotor wake velocity defect in the streamwise

direction is faster than those of a cascade of airfoils (Ref. 49) or an

isolated airfoil (Ref. 57). (c) Different values of Rs indicate that

the wake diffusion properties change considerably from the trailing

edge to distances farther downstream.

The decay rate of the radial component of velocity (Oaximum value)

is shown in Figure 8.7. The decay of the maximum radial velocity seems

to follow the following relationship (Figure 8.7):



0.16

Experimental Points

Equation (8.3) (K10= 0.75, so/S = 3.46, Rs = 14)
0.1-2 - s

0.08

0
'-I

0.04

0 0.2 0.4 0.6 0.8 1.0 1.2 1.63

s/S

Figure 8.7 Variation of Radial Component of Mean Velocity (Maximum Value) with Streamwise Distance
Downstream of the Rotor (r/rt = 0.58).
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(0) -(0) 2 sr)max ro max K 0 exp - (  (83)s

U sS S
somax

These constants are the same as those for the decay of streamwise

component with the exception of K10. The value of K10 is found to be

equal to 0.75 for s/S > 0.1.

8.3.3 Wake Width

The variation of half the wake width (k) along streamwise and

radial direction is plotted in Figure 8.8. At r/rt = 0.58, there is

negligible variation in 'R' along the radial direction, except near the

hub wall. The largest value of half the wake width at the hub may be

due to complex interaction of wake, hub wall boundary layer and

secondary flows. A logarithmic plot of the variation of half the wake

width (R) with streamwise direction is shown in Figure 8.9 for s/S >

0.15, the half wake width at r/rt = 0.58 satisfy the following

relationship:

S' 0.318
S1.93 (s/S) (8.4)

where k is the value of half the wake width at s/S = 0.15 (first
o

measuring station).

8.4 Turbulence Quantities

8.4.1 Turbulence Intensity

The distribution of turbulence intensities in the streamwise (Ts),

transverse (T ) and in radial directions (Tr) at various axial stations

is shown in Figures 8.10, 8.11, 8.12, 8.13. The data is presented for
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Equation (8.4)
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Figure 8.9 Logarithmic Plot of the Variation of Half the Wake Width with Streamwise Distance

(r/r t = 0.58).
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one radial station (r/rt = 0.58), since the trend is similar at all

other radial stations. The turbulence intensity profiles are asymmetric

about the wake centerline and this asymmetry is retained even far down-

stream of the rotor (one chord length). Furthermore, there is a tendancy

(in the radial and streamwise directions) for the occurrence of a dip

close to the wake centerline.

The largest component of turbulence intensity is in the radial

direction. The ratio of T /T n and T r/T s are 1.49 and 2.34, respectively,

near the trailing edge and 1.47 and 1.69 farther downstream of the

trailing edge. The ratio of turbulence intensities shows that the

turbulence is highly anisotropic close to the trailing edge of the

rotor blade and has the tendency towards isotropy further downstream.

The free stream turbulence level is found to be about 0.1 percent.

A theoretical explanation of the redistribution of energy between

the three components of fluctuating velocities is given by Raj and

Lumley (50). It is pointed out that, if the gradient of the radial

component of mean velocity across the wake is much larger than the

angular velocity of the machine, then,

T >T >T
r n s

This is confirmed by data presented here. The anisotropy introduced

into the flow is due to the presence of blade, rotation and the

pressure gradients.

The decay rate of the turbulence intensities with streamwise

distance downstream of the rotor is shown in Figure 8.14 and compared

with the decay rates of turbulence intensities in a cascade wake. It

is evident from Figure 8.14 that all the components of turbulence
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intensities decay at the same rate close to the trailing edge

according to the following expression (0.15 < s/S < 0.36):

(T) = A(s/S'-0.78 (8.5)
max

The value of constant A is found to be 0.109, 0.017, and 0.025,

respectively, for s, n, and r components. Farther downstream, the

intensities decay at different rates as represented by the following

relations (s/S > 0.36):

' -0.32
(T ) max = 0.037 (s/S )

(Tn) max = 0.028 (s/S.) (8.6)

' -0. 122
(Ts)max = 0.021 (s/S )

The above relations show that decay rate of (Tr)ma x is the largest of

all components of turbulence intensities.

A comparison of the decay rates of turbulence intensities of rotor

and cascade wakes (Ref. 49) shows that the turbulence level, anisotropy

and decay rate in a rotor wake is higher than that of cascade wake.

8.4.2 Reynolds Stress

In figures 8.15, 8.16, 8.17, 8.18 are shown the distribution

of components of Reynolds stress sn, Trn, and Tsr at all the axial

stations downstream of the trailing edge of the rotor blade for r/rt

0.58.

The largest component of Reynolds stress is Trn. The ratios Trn/

Tsn and Trn/Tsr are 2 and 3.1 respectively near the trailing edge and 1

and 1.5 farther downstream. The ratio of Reynolds stresses show that

they have a tendency to reach the same value. The theoretical
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explanation for the occurrence of the largest value of Reynolds stress

can be based on the largest values of mean velocity gradients in the n

direction.

While no analysis is carried out:for the prediction of Reynolds

stresses, decay laws can be derived from the experimental data. A plot

of the variation of maximum values of the components of Reynolds stress

(Tsn' rn, and Tsr) downstream of the rotor is shown in Figure 8.19.

It is clear that all Reynolds stresses first decrease rapidly (0.15 <

s/S < 0.36). Then, they decay at nearly the same rate. Near the

trailing edge (0.15 < s/S < 0.36), the decay follows the expressions

' -2.05
T = 0.001 (s/S )

rn

T = 0 0006 ( -/)-1.92 (8.7)I = 0.0006 (s/S )sn

' -1.92
T = 0.0004 (s/S )rs

Farther downstream, all the components of Reynolds stress decay at

nearly the same rate and is given by:

' -0.267
T = 0.0003 (s/S (8.8)

It is necessary to point out that the data on Reynolds stress is

qualitative in nature.

A comparison of decay laws for Reynolds stress in a cascade wake

(Ref. 49) and that of .a rotor wake indicate that Reynolds -stress decays

faster in the rotor wake.
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8.4.3 Ratio of Total Reynolds Stress ( o)

to Total Turbulence Energy (pq )

A plot of G(ITof/pq2)at various axial stations across the wake is

shown in Figure 8.20 for r/rt = 0.58. It is clear from this that the

variation of G across the wake is not constant and has a wide variation

ranging from 0.06 to 0.48. This serves as a caution for those who are

contemplating to use Bradshaw et al.'s (6) turbulence model (where G is

assumed to be constant) for predicting three-dimensional wake flows.
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CHAPTER IX

CONCLUSIONS

9.1 Cascade Wake

The experimental and analytical investigations reported in Chapter

VII indicate that the wake of a cascade of airfoils differs from that

of a cylinder, flat plate, or isolated (symmetrical) airfoil at zero

incidence, in several respects.

(i) The wake is asymmetrical. When two different length scales

are used, one for each side of the wake, mean velocity profiles become

symmetrical about the wake centerline.

(ii) The wake edge velocity changes continuously, giving rise to

either slower decay of the wake defect (as in the case of a cascade

with decelerating free-stream flow) or faster decay (as in the case of

accelerating mean flow). The mean velocity profile is of the type

3/2 2
(1 - n ) , where n = y/os or y/ op, and os, ko p are length scales

on the suction and pressure side of the wake, respectively. The wake

centerline velocity is well represented by Equation (4.27), and the

width of the wake by Equation (7.1).

(iii) Turbulence intensities are higher than those of a flat plate

wake, even though decay characteristics shown in Equations (7.5) and

(7.6) are nearly the same. Maximum Reynolds stress and decay

characteristics are given by Equation (7.7).

The change in cascade parameters (e.g., solidity c/S and incidence

i) has a dual effect. Solidity is likely to change the wake edge velo-

-m
city (m in the equation 0i z m ) and the profile drag. Both of these

zo

change the wake decay characteristics. But in the far wake, where
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Uzo O const., the velocity defect at the wake centerline is inversely

proportional to solidity. The incidence and camber effects (which

directly control boundary-layer growth, blade loading and drag

coefficient) would similarly influence the decay rate through the

parameters cd and m. The results reported.here adequately demonstrate

this.

Schlichting (56), while investigating the far wake of a cascade of

circular cylinders, derived a theoretical expression for the mean

velocity, which shows no dependency on cd. This is due to the fact

that the cd for a circular cylinder in the Reynolds number range of

104 to 105 is nearly unity, while that of a cascade of blades is two

or three orders of magnitude less.

The peak in turbulence intensity may occur at the wake centerline

in a cascade, depending on the thickness of the blade and the downstream

distances. Experimental data of Reynolds (53) show a similar trend.

For large-diameter cylinders, the interaction of the mean-velocity

defect and the turbulence intensity is delayed, resulting in the occur-

rence of the turbulence peak at the wake centerline. However, the

turbulence intensity peak will be away from the wake centerline for the

same cylinder at larger downstream distances,

No attempt is made in this paper to investigate the effect of

inlet turbulence. At higher levels of free-stream turbulence, the

wake decay characteristics may be different. The data of Eagleson et al.

(21) for a flat plate wake in a water tunnel indicate that the near wake

- 1/2 -1decay law changes from z to z when the turbulence level is

around 4 to 7 percent. This is an area where further research is

needed.
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9.2 Rotor Wake

The experimental and analytical investigations reported in

Chapter VIII indicate that the wake of a rotor blade differs from that

of an isolated airfoil and a cascade of airfoils in several respects.

(i) The decay rate of wake defect of a rotor blade is higher

than that of an isolated airfoil or a cascade of airfoils. The decay

law is given by Equation (8.2). However, two differing constants are

needed to prescribe the wake decay rate; one closer to the trailing

edge, and the second further downstream.

(ii) Although the profiles of mean velocity are nearly similar,

the similarity is less pronounced near the edges of the rotor wake as

compared to those of an isolated airfoil or cascade of airfoils.

(iii) The anisotropy, the magnitude of turbulence intensities

and Reynolds stresses are much higher than that of a cascade wake. The

decay rate of the turbulence intensities and Reynolds stresses is also

larger compared to a cascade wake.

The large decay in mean velocity gradients immediately downstream

of the rotor is due to intense mixing of the wake with the free stream.

However, due to large mean velocity gradients, there is a large

production of turbulence such that turbulence decay cannot adjust

itself to the abrupt changes. Consequently, at some points downstream

of the rotor, the gradients in turbulence quantities become larger than

those of mean velocities. This is an extremely inequilibrium situation

and part of the energy contained in turbulence is fed back to the mean

velocity, thus preventing the wake from decaying completely until an

equilibrium situation is reached.
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One of the important features of this investigation is the fact

that the contribution from the wake to the total unsteadiness in the

subsequent blade row comes equally from the wake turbulence and the

defect in mean velocity. Due to physical constraints, it was not

possible to investigate the flow regions in the vicinity of the

trailing edge (s/S < 0.15) or the boundary layer characteristics at

the trailing edge of the rotor blade. Therefore, it should be planned

to fully investigate the wake flow using a rotating hot-wire and

conventional probe as described in Appendix B.
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APPENDIX A

LISTING OF COMPUTER PROGRAMS
FOR ROTOR WAKE DATA PROCESSING

A) FORTRAN PROGRAM TO WRITE EVERY THIRTEENTH WAKE

/*TAPE RISH02
/*TAPE MEH07MW
// EXEC FGCG
//SOURCE.INPUT DD *

REAL * 4 V1(5000), V2(5000), V3(5000)
REAL * 4 V1BK(150), V2BK(150), V3BK(150)
LOGICAL * 1 CC(16384)
DATA NUM/0/, IPTR/4097/,IREC/0/,IFILE/1/,IMARK/1/

100 DO 10 I=1,11
IKEY = 0
CALL PEAK(VIV2,V3oVBK,V2BKV3BK IPTRIKEYIoSWTCH)
IF(IKEY.NE,O0) GO TO 1001

10 IPTR = IPTR + 151
IKEY = 0
CALL PEAK(V1,V2,V3,V1BKIV2BKoV3BKolPTR,IKEYlISWTCH)
IF(IKEY.NE.0) GO TO 1001
IKEY = 0
CALL WRITE (V1,V2,V3,V1BKoV2BKoV3BKIPTRIKEYo

X IMARK,IREC)
IF(IKEY.NE.0) GO TO 1001
IPTR = IPTR + 151
GO TO 100

1001 WRITE(6,51) IFILEIREC
IREC = 0
IFILE = IFILE + 1
IMARK = 1
IPTR = 4097
ENDFILE 70
GO TO 100

51 FORMAT(' ',o0X,'FILE NUMBER =',13 0X,
X 'NUMBER OF RECORDS=',13)
END
SUBROUTINE RESET(V1,V2oV3 IPTRoISWTCHoIKEY)
REAL * 4 V1(5000), V2(5000), V3(5000)
LOGICAL * 1 CC(16384) L(4)
EQUIVALENCE (L(1), INT)
INT = 0
ISWTCH = 0

100 CALL GET (60,CC,16384,IKEY)
IF(IKEY.NE.0) RETURN
DO 10 1=1,4096
ITEMP = (I-1) * 4 + 1
L(4) = CC(ITEMP)
V3(I) = FLOAT(INT)
L(4) = CC(ITEMP+1)
V1(I) = FLOAT(INT)
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L(4) = CC(ITEMP+2)
V2(1) = FLOAT(INT)

10 CONTINUE
IPTR = 4
RETURN
END
SUBROUTINE REBK(V1,V2,V3oV1BK2B28KV3BKISWTCH)
REAL * 4 V1(5000), V2(5000), V3(5000)
REAL * 4 V1BK(150), V2BK(150), V38K(150)
IKNT = 1
ISWTCH - 1
DO 10 1-3947,4096
V1BK(IKNT) = V1(1)
V2BK(IKNT) = V2(1)
V3BK(IKNT) = V3(I)

10 IKNT = IKNT + 1
RETURN
END
SUBROUTINE PEAK (V1,V2oV3,V1BKoV2BKoV3BKolPTR,

X IKEY,ISWTCH)
REAL * 4 V1(5000), V2(5000), V3(5000), MIN
REAL * 4 V1BK(150), V2BK(150), V3BK(150)
IF(IPTR.GT.4096) CALL RESET(V1,V2,V3,IPTR,

X ISWTCH, I KEY)
IF(IKEYoNE.0) RETURN

1 DO 10 I=IPTR,4096
TEMP = V1(l-3) - V1(1)
TEMP = TEMP/V1(I-3)
IF(TEMP.GT.0.20) GO TO 11
IF(ISWTCH.EQ1) GO TO 10
IF(I.GT.151) CALL REBK(V1,V2,V3,V1BKV2BK,

X V3BK ISWTCH)
10 IPTR = I

CALL RESET(V1,V2,V3,IPTRISWTCH,IKEY)
IF(IKEY.NE.0) RETURN
GO TO 1

11 IADD = 0
IEND = IPTR + 100
IPTR = IPTR - 2
IF(IEND.LE.4096) GO TO 12
IADD = IEND - 4096
lEND = 4096

12 MIN = 10000.0
DO 20 I=IPTR,IEND
IF(V1(I).GEoMIN) GO TO 20
MIN = V1(I)
IMIN = I

20 CONTINUE
IF(IADD.EQ.0) GO TO 21
CALL RESET(V1,V2V3o IPTR,ISWTCHIKEY)
IF(IKEYoNE.0) RETURN
DO 30 I=1,IADD
IF(VI(I).GE.MIN) GO TO 30
MIN = V1(1)
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IMIN = I
30 CONTINUE
21 IPTR = IMIN

RETURN
END
SUBROUTINE WRITE(V1,V2,V3,V1BK,V2BK,V3BK,IPTR,IKEY,

X IMARK,IREC)
REAL * 4 V1(5000), V2(5000), V3(5000)
REAL * 4 V1BK(150), V2BK(150), V3BK(150)
REAL * 4 VIF(301), V2F(301), V3F(301)
LOGICAL * 1 ACCUM(18060), L(4)
EQUIVALENCE (INT, L(1))
IKNT = 1
IF(IPTRoLTo151) GO TO 11
IF(IPTRoGTo3946) GO TO 21
ISTRT = IPTR - 150
IEND = IPTR + 150
DO 10 I=ISTRT, IEND
V1F(IKNT) = Vl(i)
V2F(IKNT) = V2(I)
V3F(IKNT) = V3(i)

10 IKNT = IKNT + 1
GO TO 100

11 DO 20 i=iPTR,150
V1F(IKNT) = V1BK(I)
V2F(IKNT) = V2BK(I)
V3F(IKNT) = V3BK(I)

20 IKNT = KNT + 1
IEND = IPTR + 150
DO 30 i=iPTRAOEND
V1F(IKNT) = V1(0)
V2F(IKNT) = V2(i)
V3F(KNT) = V3(1)

30 IKNT = IKNT + 1
GO TO 100

21 ITEMP = IPTR
IF(ISWTCHoEQO0) GO TO 22
CALL RESET (Vl,V2,V3,IPTR,ISWTCH,IKEY)
IF(IKEYoNEo0) RETURN

22 ISTRT = ITEMP - 3946
DO 40 I=ISTRT, 150
V1F(IKNT) = V1BK(I)
V2F(IKNT) = V2BK(I)
V3F(IKNT) = V3BK(i)

40 IKNT = iKNT + 1
IEND = TEMP + 150
DO 50 I=ITEMPOEND
V1F(IKNT) = V1(i)
V2F(IKNT) = V2(1)
V3F(IKNT) = V3(i)

50 IKNT = IKNT + 1
100 MIN = VIF(151)

DO- 60 I=1,301
IF(MINoLE.V1F(I)) GO TO 60
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IF( IGT. 155. OR. I.LT. 147) GO TO 71
60 CONTINUE

DO 70 1=1,301
INT = IFIXCVIF(I))
ACCUM(IMARK) =L(4)
IMARK =IMARK + 1
INT = IFIX(V2F(I))
ACCUM(IMARK) - L(4)
IMARK =IMARK + 1
1 NT = I F IX(V3F( I) )
ACCUM(IMARK) .L(4)
IMARK = IMARK + 1

70 CONTINUE
IF(IMARK.NE.18061) RETURN
CALL PUT(70,qACCUMol8060oIKEY)
IREC =IREC + 1
IMARK =1

71 RETURN
END

//DATA.FT60FOO1 DD UNITm(TAPEADEFER),VOL=SERRISHO1,
// LABEL=(1 0,SL)eDSN=FILE1
//DATA0FT6OFQO2 DD UNIT=(TAPEA,,.DEFER),VOLSER=RISH01,
// LABEL-(2,SL),DSNinFILE2
//DATA0FT60FOO3 DD UNIT=(TAPEADEFER),VOL=SER=RISHO1,
// LABEL=(3,SL),DSN=FILE3
//DATAJFT60F004 DD UNIT=(TAPEA,1,DEFER),VOLSER=RISH01e
// LABEL=(4SL),DSN=FILE4
//DATA.FT60FOO5 DD UNIT=(TAPEA,,DEFER),VOL=SERRISH01,
// LABEL=(5oSL)oDSNinFILE5
//DATA.FT60F006 DD UNIT=(TAPEADEFER),VOL=SERRISH01e
// LABEL=(6,SL),DSN=FILE6
//DATAFT60FOO7 DD UNIT=(TAPEA,,DEFER),VOL=SERnRISH010
// LABEL=(7,SL),DSN=FILE7
//DATA.,FT60O8 DO UNIT=(TAPEAddDEFER)VOLSER=RISH01,
// LABEL=(8,SL),DSN=FILE8
//DATAOFT6UFOO9 DD UNIT=(TAPEADEFER)OVOL=SER=RISHOIb
// LABEL=(9,,SL)0oSN=FILE9
//DATA0FT6QF010 DD UNIT=(TAPEA,DEFER),VOL=SER=RISHOI,
// LABEL=( 10o SOLoDSN= I LE10
//DATA.FT70FOO1 DO UNIT=(TAPE66,,DEFER),VOL=SER=MEH0
/DSN=MARK 0 F1eDCBC(RECFMFLRECL=180600BLKSIZE18060),
1/LABEL=(1 0 SL)

//DATA.FT70FOO2 DD UNIT=(TAPEB,,DEFER)OVOL=SER=MEH0
1DSN=MARK0F2,DCB=(RECFM=F.LRECL=1806QBLKSIZE=18060)o
1/LABEL=(2,SL)

//DATA.FT70FOO3 DD UNIT=(TAPEB,,DEFER),VOL-SER=MEHO6,
1DSN=MARK.F3DCB=(RECFMFLRECL=18060dBLKSIZE=18060),
/1LABEL=(3,SL)

//DATA.FT7OFOO4 DD UNITu(TAPEB,,DEFER),VOL-SER-MEHO6,
1DSN=MARK.FpDCB(RECFMFLRECL18060BLKSIZE18060)0
1/LABEL=(4,SL)

//DATA.FT70F005 DD UNIT=(TAPEB,,DEFER),,VOL=SER-MEHQ6,
1DSN=MARK.F5DCB(RECFM-F,LRECL=18060,BLKSIZE=18060)d
/1LABEL=(56 SL)
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//DATA.FT70F006 DD UNIT=(TAPEB,,DEFER)~VOL=SER=MEHO6,
// DSN=MARKoF6,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(6,SL)
//DATAFT70F007 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEHO6,
// DSN=MARKF7,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(7,SL)
//DATAoFT70F008 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEHO6,
// DSN=MARKoF8,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(8,SL)
//DATA.FT7OF009 DD tJNIT=(TAPEB,,DEFER),VOL=SER=MEHO6,
// ,DSN=MARK.F9,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(9,SL)
//DATAoFT70F010 DD UNIT=(TAPEB,,DEFER),VOL=SER=MEHO6,
// DSN=MARKoF1O,DCB=(RECFM=F,LRECL=18060,BLKSIZE=18060),
// LABEL=(!0,SL)

B) FORTRAN PROGRAM TO OBTAIN MEAN VELOCITY, TURBULENCE
INTENSITY AND REYNOLDS STRESS.

// MSGLEVEL=(1,1)
/*TAPE MEH07
/*USERID MEH02
//WTLOG EXEC PGM=WTLOG
//STEPLIB DD DSN=COMPLIB,DISP=SHR
//FTO5F001 DD *
RISH
PLOTS
//STEP1 EXEC FGCG
//SOURCEINPUT DD *

REAL * 4 K2
DIMENSION V1(6020), V2(6020), V3(6020), SUMV(6020)
DIMENSION SINA(6020), SINB(6020), SINC(6020)
DIMENSION AVGVI(301), AVGV2(301), AVGV3(301)
DIMENSION AVGV1S(301), AVGV2S(301), AVGV3S(301)
DIMENSION SMV1V2(301), SMV2V3(301), SMV3V1(301)
DIMENSION TEMP2(301), AVG123(301), SUMAVG(301)
LOGICAL * I CC(18060), L(4)
DATA IREC/1/,DIV/351.0/,IAVG/6020/,K2/0.029/
DATA VICON/13.3/,V2CON/6.6/,V3CON/16.0/,NREC/3/
DATA E1CON/3.210/,E2CON/3.237/,E3CON/3o230/
EQUIVALENCE (L(1),INT)
EQUIVALENCE (AVGV1(1), CC(1))
EQUIVALENCE (AVGV2(1), CC(1205))
EQUIVALENCE (AVGV3(1), CC(2409))
EQUIVALENCE (AVGV1S(1),CC(3613))
EQUIVALENCE (AVGV2S(1),CC(4817))
EQUIVALENCE (AVGV3S(1),CC(6021))
EQUIVALENCE (SMV1V2(1),CC(7225))
EQUIVALENCE (SMV2V3(1),CC(8429))
EQUIVALENCE (SMV3V1(1),CC(9633))
EQUIVALENCE (AVG123(1),CC(10837))
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EQUIVALENCE (SUMAVG(1),CC(12041))
TAVG = 20.0 * FLOAT(NREC)
INT = 0
DO 1000.IREC=1,NREC
CALL GET (91,CC,18060,KEY)
IF(KEY) 101,102,103

102 CONST = 3.985/255.0
K2P2 = K2 + 2.0
DO 10 I=1,IAVG
ITEMP = (1-1)*3 +1
L(4) = CC(ITEMP)
TEMP - FLOAT(INT-128)*CONST
TINT = (TEMP/V3CON) + E3CON
V3(I) = ((TINT**2 - 3.95)/0.802)**2
L(4) = CC(ITEMP+1)
TEMP = FLOAT(INT-128)*CONST
TINT - (TEMP/V1CON) + ElCON
V1(I) = ((TINT**2 - 3.95)/0.802)**2
L(4) = CC(ITEMP+2)
TEMP = FLOAT(INT-128)*CONST
TINT = (TEMP/V2CON) + E2CON
V2(I) = ((TINT**2 - 3.95)/0.802)**2

10 SUMV(I) =((V1(1)**2+V2(I)**2+V3(I)**2)/K2P2)**0.5
DO 20 I=10AVG
SINA(I) = V1(I)/SUMV(I)
IF(SINA(I).GT.1 0.O0RSINA(I).LT.-1o0) GO TO 11
SINA(I) = ARSIN(SINA(I))
SINB(I) = V2(I)/SUMV(I)
IF(SINB(I).GT 00 .0o0 ORSINB(I).LT.-1.0) GO TO 11
SINB(I) = ARSIN(SINB(I))
SINC(I) = V3(1)/SUMV(I)
IF(SINC(I)oGT.1.0.OR.SINC(I).LT.-1.0) GO TO 11
SINC(I) - ARSIN(SINC(I))
GO TO 20

11 SINA(I) = SINA(I-1)
SINB(I) = SINB(I-1)
SINC(I) = SINC(I-1)
SUMV(I) = SUMV(I-1)
Vl(1) = V1(1-1)
V2(I) = V2(1-1)
V3(I) = V3(1-1)

20 CONTINUE
DO 30 I=1,IAVG
COMVAL = (V1(I)/SUMV(I))**2
TEMP = ((COMVAL-K2)/(1 00-K2))**0.5
SINA(I) = ARSIN(TEMP)
COMVAL = (V2(I)/SUMV(I))**2
TEMP = ((COMVAL-K2)/(1.0-K2))**0o5
SINB(I) = ARSIN(TEMP)
COMVAL = (V3(I)/SUMV(I))**2
TEMP = ((COMVAL-K2)/(1.0-K2))**0.5
SINC(I) = ARSIN(TEMP)

C
C
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C COORDINATE TRANSFORMATION
C

V1(I) = COS(SINA(I))/TEMP*SUMV(I)*(0.82*TEMP+
X 0.575*COS(SIN(I)))

V2(I) = COS(SINB(l))/TEMP*SUMV(I)*(082*TEMP+
X 0.575*COS(SINC(I)))

V3(I) = SUMV(I)*(-0.575*TEMP + 0.82*COS(SINC(I)))
V1(I) = 0.707 * (V1(I) + V2(I))
V2(I) = 0.707 * (V1(1) - V2(1))
V2(i) = 59.5 - V2(I)

30 CONTINUE
CALL PUT (80,V1,24080,IKEY)
CALL PUT (80,V2,24080,IKEY)
CALL PUT (80,V3,24080,IKEY)

1000 CONTINUE
REWIND 80

C
DO 1100 1=1,301
AVGV1(1) = 0.0
AVGV2(I) = 0.0
AVGV3(I) = 0.0
AVGV1S(I) = 0.0
AVGV2S(I) = 0.0
AVGV3S(I) = 0.0
SMV1V2(I) = 0,0
SMV2V3(I) = 0.0
SMV3V1(I) = 0,0

1100 CONTINUE
C
C BEGINNING OF THE AVERAGING PROCEDURE
C

DO 2000 IREC=1,NREC
CALL GET (80,V1,24080,IKEY)
CALL GET (80,V2,24080oKEY)
CALL GET (80,V3,24080,IKEY)
DO 2000 IKNT=1,301
DO 50 I=IKNT,IAVG,301
AVGV1(IKNT) = AVGV1(IKNT) + V1(1)
AVGV2(IKNT) = AVGV2(IKNT) + V2(I)
AVGV3(IKNT) = AVGV3(IKNT) + V3(I)

50 CONTINUE
V1MAXL = -10000,0

2000 CONTINUE
DO 3000 IKNT-1,301

C
C
C MEAN VELOCITY
C

AVGV1(IKNT) = AVGV1(IKNT)/TAVG
AVGV2(IKNT) = AVGV2(IKNT)/TAVG
AVGV3(IKNT) = AVGV3(IKNT)/TAVG
IF(AVGV1(IKNT).GT.V1MAXL) V1MAXL = AVGV1(IKNT)

3000 CONTINUE
REWIND 80

)S
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DO 3100 I=1,301
AVGV1S(I) = 0.0
AVGV2S(l) = 0.0
AVGV3S(I) = 0.0
SMV1V2(I) = 0.0
SMV2V3(I) = 0.0
SMV3V1(I) = 0.0

3100 CONTINUE
D.= AVGV2(151)/AVGV1(151)
D = ATAN(D)
DO 3300 1=1,301
AVGV1(1) = AVGV1(I)*COS(D) + AVGV2(1)*SIN(D)
AVGV2(I) = -AVGV1(1)*SIN(D) + AVGV2(I)*COS(D)

3300 CONTINUE
DO 4000 IREC=1,NREC
CALL GET(80;V1, 24080,1KEY)
CALL GET(80,V2,24080,IKEY)
CALL GET(80,V3o24080,IKEY)
DO 4000 IKNT=1,301
DO 60 I=IKNTIAVG,301
V1(I) = V1(I)*COS(D) + V2(I)*SIN(D)
V2(l) - -V1(I)*SIN(D) + V2(I)*COS(D)
AVGV1S(IKNT) = AVGV1S(IKNT)+(V1(1)-AVGV1(IKNT))**2
AVGV2S(IKNT) = AVGV2S(IKNT)+(V2(I)-AVGV2(IKNT))**2
AVGV3S(IKNT) = AVGV3S(IKNT)+(V3(I)-AVGV3(IKNT))**2

60 CONTINUE
4000 CONTINUE

REWIND 80
C
C
C TURBULENCE INTENSITY
C

DO 4100.IKNT=1,301
AVGV1S(IKNT) = AVGV1S(IKNT)/TAVG
AVGV2S(IKNT) = AVGV2S(IKNT)/TAVG
AVGV3S(IKNT) = AVGV3S(IKNT)/TAVG
AVG123(IKNT) = (AVGVIS(IKNT) + AVGV2S(IKNT) +

X AVGV3S(IKNT))**0.5
AVGV1S(IKNT) = AVGV1S(IKNT)**0.5
AVGV2S(IKNT) = AVGV2S(IKNT)**0.5
AVGV3S(IKNT) = AVGV3S(IKNT)**05

4100 CONTINUE
DO 5000 IREC=1,NREC
CALL GET(80oVl124080,IKEY)
CALL GET(80,V2o24080,IKEY)
CALL GET(80.V3,24080,IKEY)
DO 5000 IKNT=1,301
DO 70 I=IKNT,IAVG,301
V1(1) = V1(I)*COS(D) + V2(I)*SIN(D)
V2(I) = -V1(1)*SIN(D) + V2(I)*COS(D)
TV1 = V1(I) - AVGV1(IKNT)
TV2 = V2(I) - AVGV2(IKNT)
TV3 = V3(1) - AVGV3(IKNT)
SMV1V2(IKNT) = SMV1V2(IKNT) + TV1*TV2
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SMV2V3(IKNT) = SMV2V3(IKNT) + TV2*TV3
SMV3V1(IKNT) = SMV3V1(IKNT) + TV3*TV1

70 CONTINUE
5000 CONTINUE
C
C
C REYNOLDS STRESS
C

DO 5100 IKNT=1,301
SMVIV2(IKNT) = SMV1V2(IKNT)/TAVG
SMV2V3(IKNT) = SMV2V3(IKNT)/TAVG
SMV3V1(IKNT) = SMV3V1(IKNT)/TAVG
SUMAVG(IKNT) = (SMV1V2(IKNT)**2+SMV2V3(IKNT)**2+

X SMV3V1(IKNT)**2)**0.5/AVG123(IKNT)**2
5100 CONTINUE

V1MAX = -100000.0
DO 80 1=1,301
IF(AVGV1(1).GT.VIMAX) VIMAX = AVGVI(1)

80 CONTINUE
V1MAX2 = V1MAX**2
DO 90 1=1,301
AVGV1(I) = AVGV1(I)/V1MAX
AVGV2(I) = AVGV2(I)/V1MAX
AVGV3(I) = AVGV3(1)/V1MAX
AVGVIS(I) = AVGVIS(I)/V1MAX
AVGV2S(I) = AVGV2S(I)/VIMAX
AVGV3S(I) = AVGV3S(I)/V1MAX
AVG123(I) = AVG123(I)/V1MAX
SMVIV2(I) = SMV1V2(1)/V1MAX2
SMV2V3(I) = SMV2V3(1)/V1MAX2
SMV3V1(I) = SMV3V1(1)/VIMAX2

90 CONTINUE.
WRITE(6,82) IREC,V1MAXL,V1MAX
WRITE(6,71)
DO 701 1=1,301

701 WRITE(6,81) I,AVGV1(I),AVGV2(1),AVGV3(I),TEMP2(I)
WRITE(6,72)
DO 702 1=1,301

702 WRITE(6,81) I,AVGV1S(I),AVGV2S(I),AVGV3S(I),
X AVG123(1)
WRITE(6,73)Y
DO 703 1=1,301

703 WRITE(6,81) 1,SMV1V2(I),SMV2V3(I),SMV3V1(I),
X SUMAVG( I)

CALL PUT(70,CC,13244,IKEY)
STOP

101 WRITE(6,61)
STOP

103 WRITE(6,62)
STOP

61 FORMAT('-', T10, 'ERROR ON TAPE')
62 FORMAT('-', T10, 'END OF FILE ON TAPE')
63 FORMAT('-', T10, 'RECORD NUMBER',2X,15)
71 FORMAT('-',T28,'AVGV1',T58,'AVGV2',T88,'AVGV3',



183

X T118,'TEMP'//)
72 FORMAT('-',T28,'AVGVIS',T58,'AVGV2S',T88,'AVGV3S'o

X T118,'AVG123'//)
73 FORMAT('-'.T28,'SMV1V2',T58 'SMV2V3'oT88 'SMV3V1'o

X T118,'SUMAVG'//)
81 FORMAT(' ',15,4(10XF20.8))
82 FORMAT('1',10X,'DATA SET NUMBER',15,5X,'V1MAXL=',

X F10.5,10X,'V1MAX=',F10.5///)
END

//DATASYSLIN DD DSN=&&OBMOD,DISP=(OLDDELETE,DELETE)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//DATA.FT70F001 DD UNIT=3330,VOL=SER=SYSDA1,DSN=MARK.F1,
// DCB=(RECFM=FToLRECL=13244,BLKSIZE=13244,BUFNO=1),
// DISP=(NEWPASSDELETE),SPACE=(CYL,(5,1))
//DATA.FT80F001 DD UNIT=3330,VOL=SER=SYSDA1,DSN=TEMP,
// DCB=(RECF=FTOLRECL=24080oBLKSIZE=24080,BUFNO=1),
// DISP=(NEWDELETE) SPACE=(CYL,(5,2))
//DATA.FT91F001 DD UNIT=(24000,DEFER),VOL=SER=MEHO7,
// LABEL=(1,SL),DSN=MARK.F1,DCB=BUFNO=1
//STEP2 EXEC FGCG
//SOURCE.INPUT DD *

REAL * 4 DATA(301,11),Y(301),X(301),DP(6,2000)
INTEGER * 2 AP(2000), BP(2000), CP(2000)
LOGICAL * 1 LABEL(40,2), SYM/'*'/, GRAPH(13244)
EQUIVALENCE (DATA(1,1),GRAPH(1))
DATA N/301/
CALL INITQ (APBPCPDP,2000)
CALL GET(50,GRAPH,13244IKEY)
DO 10 Il1,N

10 X(I) = FLOAT(I-151)/178.0
DO 100 IGR=1,11
DO 90 1=1,301

90 Y(I) = DATA(I,IGR)
LOGX = 0
LOGY = 0
XAXIS = 7.0
YAXIS = 5.0
XMIN = 100000.0
XMAX = -10000.0
DO 15 I=I,N
IF(X(I).GT.XMAX) XMAX = X(I)
IF(X(I).LT.XMIN) XMIN = X(I)

15 CONTINUE
XINC = (XMAX-XMIN)/5.0
NXDEC = 5
YMIN = 10000.0
YMAX = -10000.0
DO 20 I=1,N
IF(Y(I).GT.YMAX) YMAX = Y(I)
IF(Y(I).LT.YMIN) YMIN = Y(I)

20 CONTINUE
YINC = (YMAX-YMIN)/4.0
NYDEC = 4
XSMIN = XMIN
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XSMAX = XMAX
YSMIN = YMIN
YSMAX = YMAX
I CON = 0
HT = 0.15
NnECX = 2
MDECY = 2
IF(YSMIN.LT.,0.01) PIDECY 4
HTS - 0.15
READ(5,5l) (LABEL( 1,1), 11,4O)
READ(5,51) (LABEL( 1,2) 1=1,40)
CALL PLOTIT(Y,N, LOOX, LOGY,XAX IS, YAXI S,XMINXINC,.

X NXDEC,YMIN,YINC,NYDEC,LABELoXSMINo
X XSMAX,YSMIN,YSMAX,X,SYM, ICON,HT,
X NDECX,NDECY,HTS)

CALL PAWZQ
100 CONTINUE

RET URN
51 FORMAT(1MAI)

END~
//DATA.FT07Fn01D 0!) NIT=BAT,FI LES=($T2F1Bl1,$T2F1B2)
//DATA.FT50FOO1 DI) UNIT=3330,VOL=SER=SYSDA1,DSN=MARK.F1,
/1LABEL=(ISIJ),DISP=(OLD,DFI.ETE)

//DATA.INPUT DI)
-2Y/S +2Y/S

AVGUS/AVG(USMAX T2Fl
-2Y/S +2Y/S

AVG UN/AVGUSMAX
-2Y/S +2Y/S

AVGU.R/ AVGOStMAX
-2Y/S +2Y/S

AVGJS2**0. 5/AVOIJSMAX
-2Y/S +2Y/S

AVGJN 2 0*. 5 /AVGUSMAX
-2Y/S +2Y/S

AVGUR2**0.5/AVGUSMAX
-2Y/S +2Y/S

AVGIJSUt4/AVGIJSMAX ** 2
-2Y/S +2Y/S

AVGU1NUR/ AVGIJSMAX **2
-2Y/S +2Y/S

AVGU RUS/ AVGU SMAX * 2
-2Y/S +2Y/S

-2Y/S +2Y/S
T/ Q* *2
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APPENDIX B

ROTATING PROBE MEASUREMENT

It has been indicated in Chapter IX that it is not feasible to

investigate regions s/S < 0.15 with a stationary three-sensor hot

wire probe due to physical limitations. However, the largest decay of

the wake centerline velocity (up to 90 percent) occurs in this region.

Moreover, the investigations were carried out in a rotor specifically

designed to operate at zero loading. Even though the actual rotor has

a small loading, it cannot be operated at high lift coefficients

normally encountered in practice.

The abovementioned difficulties can be overcome by carrying out

measurements in a rotating frame of reference and on a loaded rotor.

Therefore, it is first planned to repeat the stationary probe measure-

ment with a rotating probe measurement with a special emphasis on

regions close to the trailing edge (s/S < 0.15) and boundary layer on

the trailing edge to know the initial conditions and regions very

close to the hub and the annulus wall.

For carrying out rotating probe measurement, the Axial Flow Research

Fan Facility of the Applied Research Laboratory is being modified. A

rotating traversing mechanism (Figure B-i) is being installed. The

traversing mechanism, when in full operation, will provide two degrees

of freedom to the probe in rotation (one about its own axis and the

second in the circumferential direction). While stationary, the probe

location can be changed radially and axially.

The block diagram of turbulence instrumentation for rotating

probe measurement is shown in Figure B-2. The quantities obtained
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Figure B-1 Traversing Mechanism.
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Figure B-2 Block Diagram of Turbulence Instrumentation for Mean
Velocity, Turbulence Intensity, and Shear Stresses.
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can be transferred in any new coordinate system by using the standard

method of coordinate transformation.

The program of rotating probe measurements is outlined in

Reference (34).




